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Summary 
 

With respect to commonly used PSπ sampling techniques, samplers are often 

interested in reducing the design variance of the Horvitz and Thompson estimator. We 

first describe the differences between the mechanisms of conventional design-based 

PSπ sampling methods of Mizuno and Brewer and two model-based PSπ sampling 

methods developed by Kim et al. We also suggest two new model-based PSπ sampling 

methods, and empirically compare the efficiency of the new methods to the previous 

model-based sampling methods and design-based PSπ and non- PSπ sampling methods. 

The case where the sample size is two as in “two per stratum” designs is of particular 

interest for empirical comparison. In regard to the design variance, model-based 

PSπ sampling methods are preferable to design-based PSπ sampling methods.  One of 

the new methods performs best. This new method is comparable to the method of Murthy, 

which is a design-based non-PSπ sampling procedure. Moreover, model-based sampling 

methods are preferable to design-based sampling methods due to the flexibility in the 

choice of sampling design that has better stability of the variance estimator.  

 
Key words: superpopulation regression model; average variance; optimization; design 
variance; stability of variance estimator; maximum likelihood; restricted maximum 
likelihood 
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Résumé 
 

Parmi techniques d'échantillonnage couramment utilisées, les échantillonneurs sont 
souvent intéressés par la réduction de la variance du plan d’échantillonnage de 
l'estimateur de Horvitz et Thompson. Nous décrivons d'abord les différences entre les 
mécanismes de conception classique fondée sur les méthodes d'échantillonnage de 
Mizuno et Brewer et deux méthodes d'échantillonnage fondées sur un modèle mis au 
point par Kim et autres. Nous suggérons également deux nouvellesaux approches 
d'échantillonnage fondées sur un modéle, et réalisons une comparaisons empirique de 
l'efficacité des nouvelles méthodes par rapport aux méthodes d'échantillonnage basées sur 
un modèle et les approches fondées sur un plan non-échantillonnale. La comparaison 
empirique revêt un intérêt particulier lorsque la taille de l'échantillon est de deux. 
S’agissant de la variance du plan d’échantillonnage, les méthodes d'échantillonnage 
basées sur un modèle sont préférables aux méthodes fondées sur un plan 
d'échantillonnage. Une des nouvelles méthodes se distingue par sa performance. Cette 
nouvelle méthode est comparable à celle méthode Murthy, fondée sur un plan non-
échantillonnale. En outre, les méthodes d'échantillonnage fondées sur un modèle sont 
préférables aux approches fondées sur un plan en raison de la flexibilité dans le choix du 
plan d'échantillonnage pour assurer une meilleure stabilité de l'estimateur de la variance. 
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1. Introduction 

 
Since Hansen and Hurwitz (1943) first suggested the selection of primary sampling 

units from each stratum with probabilities proportional to size (PPS), a large number of 

techniques for sampling without replacement with unequal probabilities have been 

developed.  

As discussed by Brewer and Hanif (1983) and Särndal (1996), much research on 

sample selection has been focused on design-based inclusion probability proportional to 

size (π PS ) sampling procedures in which the second-order inclusion probabilities (or 

joint probabilities), which indicate the probabilities that any two units in a population are 

both included in a sample, have a key role in the variance reduction. For example, the 

methods of Mizuno (1952) and Brewer (1963) that are draw-by-draw procedures and 

Sampford’s (1967) method, a rejective procedure, are well known π PS  sampling and 

commonly employed by samplers. The method of Mizuno (1952) is available in the R 

package, and the methods of Brewer (1963) and Sampford (1967) are available in the R 

package and software such as SAS or SPSS. See “sampling” package of R on the Web 

site of the Comprehensive R Archive Network (CRAN) (https://cran.r-

project.org/web/packages/sampling/index.html) and “Complex Samples” in PASW 

Statistics (formerly SPSS Statistics) and SAS/STAT (2023). Murthy’s (1957) method, a 

non-π PS  draw-by-draw procedure, was noted by Rao and Bayless (1969) and Cochran 

(1977). Murthy’s method is available in SAS or SPSS for selecting samples in “two per 

stratum” designs.  

The comparative efficiency of these techniques in actual population sampling 

applications is an open question. As seen in many empirical studies, this may be due to 

the fact that the variances of the estimates of interest calculated from a sample selected 

by any sampling method are sensitive to population characteristics, and hence the user 
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may not be sure that the efficiency of a chosen method would be significantly better than 

other procedures. This is especially true when a small sample is selected from a 

population or population stratum. In many national surveys, deep stratification with a 

substantial number of strata is used, and only a small number of cluster units are sampled 

from each stratum. For example, two per stratum designs are common in stratified cluster 

sampling (e.g., see Wu and Thompson, 2020, pp. 71-73). Accordingly, a sampling 

method whose efficiency is robust in the case of small samples would be preferred.  

Although a sample is selected from a finite population, considering the concept of an 

infinite superpopulation may be useful in the sample selection stage. In fact, an infinite 

superpopulation model has been often used in the estimation procedures, such as model-

assisted estimation and model-dependent estimation. But with regard to sample selection 

the model has been used by many writers mainly for the theoretical comparisons among 

sampling procedures, not for the actual selection of a sample.  

The model may be used to ensure that the second-order inclusion probabilities 

involving sampling design implemented by a π PS  sampling procedure would result in 

reasonable efficiency. Kim et al. (2006) developed a theory of model-based PSπ   

sampling procedures as a specification of the selection method using the model. Their 

procedures to yield optimal sampling designs that reduce the variance of the Horvitz and 

Thompson (1952) estimator were based on fairly practical linear superpopulation models 

and optimization theory.  

In this paper, we first describe the mechanism of design-based π PS  sampling of 

Mizuno (1952) and Brewer (1963) and model-based π PS  sampling developed by Kim et 

al. (2006). Next, we describe new model-based π PS  sampling methods, and empirically 

compare their efficiency to that for the previous model-based sampling methods and the 

conventional design-based sampling methods of Mizuno (1952), Brewer (1963) and 

Murthy (1957). For estimation of the parameters of the superpopulation model in model-
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based approaches, maximum likelihood estimation and restricted maximum likelihood 

estimation are used. The case where the sample size is two is of particular interest for 

empirical comparison, both for simplicity and because it is the most important situation in 

practice. The model in model-based sampling is not be central to the selection problem 

and is just a means to the end of achieving higher efficiency.  

 
2. Mechanism of Design-Based PSπ  Sampling 

 
Before presenting model-based π PS  sampling procedures in the next section, we first 

describe design-based π PS  sampling procedures of Mizuno (1952), Brewer (1963), and 

Sampford (1967).  

Consider a finite population of N  units, denoted by { }1, , , ,= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅i NU u u u . iy  is the 

value of the variable of interest, y , for the i th unit iu . In order to estimate the total 

1=
=

N

i
i

Y y , a sample s  of size n  is selected from the finite population. Let S  be the set 

of all possible samples.  ( )p s ( ∈s S ), simply called the sampling design (or sampling 

plan), is the probability of selecting s . In particular, let ( )dp s  denote the sampling 

design in design-based π PS  sampling. Let the π i  be the first-order inclusion 

probabilities, denoted by ( )π
∈

=i d
i s

p s , and let the π ij  be the second-order inclusion 

probabilities given by  
,

( )π
∈

= ij d
i j s

p s . When 2=n , simply ( )π =ij dp s . 

The method of Mizuno (1952) for 2≥n  uses the selection procedure: 

 

i. Select the first unit iu  with unequal probabilities,ip , where /=i ip x X ,
1=

=
N

i
i

X x , 

and ix  is the value of the auxiliary variable, x , correlated with y . 

    ii. Select the remaining units with equal probabilities. 



6 
 

 
The π i  and π ij  are respectively: 

1
(1 )

1
π −= + −

−i i i

n
p p

N
                                                                       (1) 

( 1)( ) ( 1)( 2)
( )

( 1)( 2) ( 1)( 2)
π  − − − −= + + − − − − 

ij i j

n N n n n
p p

N N N N
                              (2) 

For 2=n ,  

1
( ) ( )

1
π = = +

−ij d i jp s p p
N

                                                (3) 

 

In this case the sampling design is a simple function of 
ip  and 

jp . 

The method of Brewer (1963), which is only for 2=n  and every 1/ 2<ip , has the 

more complicated procedure, as follows: 

 

         i. Select the first unit iu with probabilities 
(1 )

(1 2 )

−
−

i i

i

p p

Q p
, where 

1

1
1

2 1 2=

 
= + − 


N

i

i i

p
Q

p
. 

    ii. Select the second unit ju with probabilities 
1−

j

i

p

p
. 

 
The procedure gives  

2π =i ip                                                                               (4) 

2 (1 )
( )

(1 2 )(1 2 )
π

− −
= =

− −
i j i j

ij d
i j

p p p p
p s

Q p p
                                (5) 

 

The method of Sampford (1967) is an extension of Brewer’s (1963) method to samples 

of any size. Design-based PSπ  sampling procedures of Brewer or Sampford have the 

properties: 
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a) The sampling method is a draw-by-draw procedure, where one unit is selected 

at each successive draw. 

b) The sampling design ( )dp s , which keeps ( )π
∈

= =i d i
i s

p s np  called the π PS  

requirement, is obtained according to the selection probability of each unit 

defined for each draw, and is a function of the relative sizes ip of the units.  

 

A sampler may prefer a π PS  sampling yielding a smaller design variance. But as 

described above, the ( )dp s  in design-based π PS  sampling is a certain function of the 

relative sizes ip  depending on only the values of the auxiliary variable x , and there is no 

definite indication of the strength and direction of a linear relationship between the 

variables x  and y . Thus, although ( )dp s  plays a central role in the reduction of the 

design variance, it is not clear whether( )dp s  in any design-based π PS  sampling 

procedure would yield a low variance for any population of interest.  

 
3. Mechanism of Model-Based PSπ  Sampling 

 
A generalized regression (GREG) estimator may be one of the useful estimators for the 

population total. But it is well-known that it might be appreciably biased for a small 

sample, although the bias is in modest for large samples. As an alternative, the Horvitz-

Thompson (H-T) estimator (1952) in (6), which is unbiased for the population total and 

highly efficient under a good π PS  sampling method, can be used. 

�

1 π=
=

n
i

HT

i i

y
Y                                                         (6) 

The H-T estimator is the only unbiased estimator in the subclass of linear estimators 

denoted by  
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�

1=

=
n

i i
i

Y k y                                                         (7)  

where ik  is a constant to be used as a weight for thei th unit whenever it selected for the 

sample, and hence the best linear estimator of the subclass (Horvitz and Thompson 

(1952), Godambe (1955)). Also, note that best linear estimate does not exist for the entire 

class of linear estimators (Godambe (1955)). 

The variance of the H-T estimator is  

�( )
2

2

1 1

2
π

π π π= = >

= + − 
N N N

iji
HT i j

i i j ii i j

y
Var Y y y Y                                  (8)  

A model-based π PS  sampling method was first suggested by Des Raj (1956). Let 

( )mp s  be the sampling design in his model-based π PS  sampling, based on the model m  

denoted by α β= +i iy x  reflecting a linear relationship between the variables x  and y . 

His method for 2=n  is a variance minimization sampling procedure, which first 

constructs an optimization problem consisting of an objective function and constraints in 

terms of sampling design ( )mp s  for minimizing �(((( ))))HTVar Y  in (8) under the model. The 

method then attempts to obtain an optimal set of ( )mp s  for all possible samples by linear 

programming (LP).  

In brief, his π PS  sampling procedure has the properties: 

c) Prior the sample selection, the sampling design ( ) π=m ijp s  for all possible 

samples is determined by LP. It meets the π PS  requirement, that is, 

( )π
∈

= =i m i
i s

p s np .  

d) One selection using ( )mp s  samples the whole sample s . This is a whole 

sample procedure. 
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His sampling procedure is attractive with respect to the variance reduction achieved by 

using the model. But his model is unusual because there is no error term. Kim et al. 

(2006) developed a theory of model-based π PS  sampling procedures using an infinite 

superpopulation model. They assume that a finite population of N  units is drawn from an 

infinite superpopulation with the regression model ξ , given by 

α β ε= + +i i iy x , 1, ,= ⋅ ⋅ ⋅i N ,                                         (9) 

where ( ) 0ξ ε =i iE x , ( ) γ
ξ ε δ=i i iVar x x ( 0δ > , 0γ ≥ ), and ( , , ) 0ξ ε ε =i j i jE x x , ≠i j . 

ξE  and ξVar  respectively denote the expected value and variance under the model ξ . It 

is also assumed that the ε i  are normally distributed.  

Note that many writers often prefer the model without the intercept for the purpose of 

the simplicity of theoretical comparison between sampling procedures, while the model 

in (9) has the intercept for the practical use.  

The variance of the H-T estimator, given by Horvitz and Thompson (1952), is  

�( )
2

1 1 1

(1 )
2 2

ππ
π π π= = > = >

−
= + −  

N N N N N
iji i

HT i j i j
i i j i i j ii i j

y
Var Y y y y y                         (10)  

A different expression on the variance of the H-T estimator, suggested by Yates and 

Grundy (1953), is 

�( ) ( )
2

1

π π π
π π= >

 
= − −  

 


N N
ji

HT i j ij
i j i i j

yy
Var Y                                     (11)  

With respect to inference, the anticipated variance (ANV), introduced by Isaki and 

Fuller (1982), is used as a measure describing the variability between the total and the 

estimator of the total under both the sampling design and superpopulation model. If the 

H-T estimator is used, it simply becomes the average variance (AV), that is, the model 

expectation of the design variance expressed as  
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�( ) �( )2

ξ ξ
   − =    

HT HTpE E Y Y E Var Y ,                                      (12) 

where pE  denotes the expected value under the sampling design, and both Y  and � HTY  

are random variables. 

Let ( )ξp s  be the sampling design under model-based π PS  sampling of Kim et al. 

(2006) using the regression model ξ . They showed that in cases of 2=n , an optimal 

sampling design ( )ξp s  in a set of possible π PS  sampling designs that minimize the AV 

in (12) can be obtained by using one of the following optimization problems:   

 

                            Minimize   

1

( )
( )ξ

α β
= >

+ +


N N
i j

i j i i j

x x
p s

x x
,                                         (13) 

or  

                           Minimize 

 
1

1 1 1
( )ξα β

= >

  
− +   

  


N N

i j i j i i

p s
x x x

,                               (14) 

subject to  the linear equality constraints  

      ( )ξ π
∈

= i
i s

p s , 1, ,= ⋅ ⋅ ⋅i N                                            (15) 

 

Note that the two objective functions in (13) and (14) are induced from the expressions 

of  �(((( ))))HTVar Y  in (10) and (11), respectively, and hence a different form of �(((( ))))HTVar Y  

may yield a different optimization problem. We call these two optimization problems 

composed of (13) and (15), and (14) and (15), OP1 and OP2, respectively.  
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4. New Model-Based PSπ  Sampling 

 
We continue to focus on the design stage for the actual selection of a sample from a 

finite population, rather than the estimation stage. In other words, although the H-T 

estimator does not involve the superpopulation model ξ , we assume the model, and seek 

to find ( )ξp s  to reduce �(((( ))))HTVar Y  for the finite population as well as �( )ξ
 
 

HTE Var Y  for 

the infinite population. 

Here we first derive objective functions different from those in (13) or (14), and then 

construct different optimization problems by adding (15) and additional constraints, as 

seen later.   

 

THEOREM 1. With the variance formula in (10), the AV on the H-T estimator under the 

superpopulation model in (9) is  

 

    (((( )))) (((( ))))( / ) ( )γδ α αβ β α αβ β
N N N

i i i i i j i j
i i j i

X nx x x x x x x x2 2 2 2 2

1

1 2 2
= >= >= >= >

− + + + − + + +− + + + − + + +− + + + − + + +− + + + − + + +      

α π αβ β
N N

ij
i j i i j

X n n
X N X

n x x n n

2 2
2 2

2
1

2 1 1 1
2

= >= >= >= >

− −− −− −− −
+ + ++ + ++ + ++ + +                                 (16) 

 

Proof.  Consider the form of the variance of the H-T estimator in (10). Since it is π PS  

sampling, π =i inp . Then from the first and third terms in (10) under the superpopulation 

model, we have  

 

( )
ξ

π
π

N N N
i i

i j
i i j ii

y
E y y

2

1 1

1
2

= = >= = >= = >= = >

    −−−− −−−−    
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        ( / ) ( ) ( )ξ ξ

N N N

i i i j
i i j i

X nx E y E y y2

1 1

1 2
= = >= = >= = >= = >

= − −= − −= − −= − −      

(((( )))) (((( ))))( / ) ( )γδ α αβ β α αβ β
N N N

i i i i i j i j
i i j i

X nx x x x x x x x2 2 2 2 2

1

1 2 2
= >= >= >= >

= − + + + − + + += − + + + − + + += − + + + − + + += − + + + − + + +        

(17) 

For the second term in (10), we have 

 

ξ

π
π π

N N
ij

i j
i j i i j

E y y
1

2
= >= >= >= >

    
    
        
  

( )ξ π
N N

i j
ij

i j i i j

E y yX

n x x

2

2
1

2

= >= >= >= >
====                                       

                                 
( )α αβ β

π
N N

i j i j
ij

i j i i j

x x x xX

n x x

2 22

2
1

2

= >= >= >= >

+ + ++ + ++ + ++ + +
====   

                   
2 2

2

2 1α π
>

= 
N N

ij
i j i i j

X

n x x
 

                                         
2

2

2αβ π
>

+
+ 

N N
i j

ij
i j i i j

x xX

n x x
                                            (18) 

                                                              2 2 1β −+ n
X

n
 

 

When the second term in (18) is expanded, it gives 

 

2

2

2 1 1αβ π π
> >

 
+ 

  
 

N N N N

ij ij
i j i i j ij i

X

n x x

2

2

1 1αβ π π
≠ ≠

 
= + 

  
   

N N N N

ij ij
j i j i j ij i

X

n x x
 

2

2

1 1
( 1) ( 1)

αβ π π
 

= − + − 
  
 

N N

j i
j ij i

X
n n

n x x
 

 1
2αβ −= n

X N
n

                                                 (19) 
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This completes the proof. 

 

COROLLARY 1 . With the variance formula in (10), the AV on the H-T estimator under 

the superpopulation model with 0α =  in (9) does not depend on π ij
, and is fixed as  

(((( ))))( / ) γδ β β β
N N N

i i i i j
i i j i

n
X nx x x x x X

n
2 2 2 2 2

1

1
1 2

= >= >= >= >

−−−−− + − +− + − +− + − +− + − +                             (20) 

 

COROLLARY 2 . If the superpopulation model in (9) is assumed, the minimization of 

the AV on the H-T estimator given in (16) is equivalent to minimizing  

,

1
( )ξ

> ∈
 

N N

i j i i j si j

p s
x x

                                                   (21) 

 

Proof. In (16) only the third term depends on π ij
, while the other terms do not depend on 

π ij
, and are fixed. Thus, the minimization of the AV amounts to minimizing (21).  

 

REMARK 1 . (21) does not depend on α , β , δ , and γ , and it is a linear function of 

( )ξp s . 

 

 COROLLARY 3 . In cases of 2=n , the minimization of the AV on the H-T estimator is 

equivalent to minimizing 

1
( )ξ

>


N N

i j i i j

p s
x x

                                                   (22) 

 

REMARK 2 . As given in (22), in cases of 2=n , the minimization of the AV on the H-T 

estimator is reduced to minimizing a simple linear function of ( )ξp s . (22) is the same 
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function as Des Raj (1956) induced to minimize (((( ))))ĤTVar Y under the assumption that 

α β= +i iy x  without the error term. See page 198, Des Raj (1956). 

 

RESULT 1. Based on (22), in cases of 2=n , a simple optimization problem to find 

model-based π PS sampling design ( )ξp s , called OP3, can be given by: 

 

                         Minimize 
1

( )ξ
>


N N

i j i i j

p s
x x

                                                 (23) 

subject to the linear equality constraints 

        ( )ξ π i
i s

p s
∈∈∈∈

==== , 1, ,= ⋅ ⋅ ⋅i N                                              (24) 

 

Now we obtain a different AV by using a variance form different from (10). 

 

THEOREM 2 . Using the variance expression in (11), the AV on the H-T estimator under 

the superpopulation model in (9) is  

(((( )))) (((( ))))γ γδ δ α α β
N N N N

i i i j i
i i i j i

X
x x x x x

n
1 1

1 1 1

2− −− −− −− −

= = = >= = = >= = = >= = = >

    
− − − +− − − +− − − +− − − +    

    
                    

( )α βα π α π β π
N N N N N N

ij ij ij
i j i i j i i j ii j i i

X Nn n

n x x x X x

2

2 2
1 1 1

2 1 1 1 1
2

= > = > = >= > = > = >= > = > = >= > = > = >

    −−−−+ − + −+ − + −+ − + −+ − + −    
        
                (25) 

 

Proof.  For (11), we may write  

�(((( )))) πN N
ij ji

HT i j
i j i i j

yy
Var Y p p

n p p

2

2
1= >= >= >= >

        
= − −= − −= − −= − −                      
                                (26) 
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Since  

ξ
ji

i j

yy
E

p p

2
    

−−−−    
        

( )γδ α β αβi i i
i

x x x
p

2 2 2
2

2
2= + + += + + += + + += + + + ( ( ) )α αβ βi j i j

i j

x x x x
p p

2 22
− + + +− + + +− + + +− + + +  

(((( ))))γ γδ α α βj i
i i

i j

x x
X p X x

x x
2 2 12 2− −− −− −− −−−−−

= + += + += + += + + ,                                            (27) 

we have 

ξ

πN N
ij ji

i j
i j i i j

yy
E p p

n p p

2

2
1= >= >= >= >

            
    − −− −− −− −                              
  

γ γ π
δ

N N
ij

i i j
i j i

X p p p
n

2
2

1

2 −−−−

= >= >= >= >

    
= −= −= −= −    

    
     

          (((( ))))π
α α β

N N
ij j i

i j i
i j i i j

x x
X p p x

n x x
2 1

2
1

2 −−−−

= >= >= >= >

    −−−−    
+ − ++ − ++ − ++ − +        

            
        

( )
γ

γδ N

i i
i

X
np p

n
1

1

1 −−−−

====
= −= −= −= − (((( ))))α α β

N N
i j j i

i
i j i i j

x x x x
X x

X x x
2 1

2
1

2 −−−−

= >= >= >= >

    −−−−
+ ++ ++ ++ +    

        
  

                            (((( ))))α α β π
N N

j i
i ij

i j i i j

x xX
x

n x x

2
1

2
1

2 −−−−

= >= >= >= >

−−−−
− +− +− +− +  

γ γδ δ
N N

i i
i i

X
x x

n
1

1 1

−−−−

= == == == =
= −= −= −= −     (((( )))) (((( ))))α α β

N N

i j i
i j i

x x x 1

1

2 −−−−

= >= >= >= >

    
− − +− − +− − +− − +    

    
  

(((( )))) 
α α β π

N N
i j

i ij
i j i i j

x xX
x

n x x

2
1

2
1

2 −−−−

= >= >= >= >

−−−−
+ ++ ++ ++ +                                                    (28) 

 

The last term in (28) can be written in the form 

(((( ))))α α β π
N N

i j
i ij

i j i i j

x xX
x

n x x

2
1

2
1

2 −−−−

= >= >= >= >

−−−−
++++

α α π β π
N N N N

i j i j
ij ij

i j i i j ii j i j

x x x xX

n x x x x

2

2 2
1 1

2

= > = >= > = >= > = >= > = >

    − −− −− −− −
= += += += +    

        
      

α α π α π β π π
N N N N N N N N

ij ij ij ij
i j i i j i i j i i j ii j i j i

X

n x x x x x

2

2 2
1 1 1 1

1 1 1 1
2 2 2 2

= > = > = > = >= > = > = > = >= > = > = > = >= > = > = > = >

        
= − + −= − + −= − + −= − + −                        

                (29) 
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Also,     

β π π β π π π
N N N N N N N N N N

ij ij ij ij ij
i j i i j i i j i i j i i j ij i j i ix x x x x1 1 1 1 1

1 1 1 1 1
2 2 2 2 4

= > = > = > = > = >= > = > = > = > = >= > = > = > = > = >= > = > = > = > = >

            
− = + −− = + −− = + −− = + −                        

            
                  

β π π π
N N N N N N

ij ij ij
i j i j i j i j ii j ix x x1

1 1 1
4

≠ ≠ = >≠ ≠ = >≠ ≠ = >≠ ≠ = >

    
= + −= + −= + −= + −        

    
                  

( )β π
N N

ij
i j i i

Nn n

X x1

1 1
2 2

= >= >= >= >

    −−−−= −= −= −= −    
    

                              (30) 

This completes the proof. 

 

COROLLARY 4 . Under the superpopulation model with 0α =  in (9), (25) reduces to  

γ γδ δ
N N

i i
i i

X
x x

n
1

1 1

−−−−

= == == == =
−−−−                                                   (31) 

 

REMARK 3 . (31) is different from (20), due to the different expressions for the variance 

of the H-T estimator. 

 

COROLLARY 5 . Under the superpopulation model in (9), minimizing the AV on the H-

T estimator given in (25) amounts to minimizing  

α π α π β π
N N N N N N

ij ij ij
i j i i j i i j ii j i ix x x x2

1 1 1

1 1 1
2

= > = > = >= > = > = >= > = > = >= > = > = >
− −− −− −− −         ,                       (32) 

where 
,

( )ξπ
∈

= ij
i j s

p s . 

 

REMARK 4 . (32) depends on α  and β , and it is a linear function of ( )ξp s . 

 

COROLLARY 6 . In cases of 2=n ,  the minimization of (32) reduces to minimizing   
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2

1 1 1
2 ( )ξα β

>

  
− −      


N N

i j i i j i i

p s
x x x x

                                 (33) 

 

RESULT 2. The different optimization problem, called OP4, to obtain a model-based 

π PS  sampling design ( )ξp s , for the case of 2=n , is given by:   

 

                          Minimize 

2

1 1 1
2 ( )ξα β

>

  
− −      


N N

i j i i j i i

p s
x x x x

                                (34) 

subject to  

         ( )ξ π i
i s

p s
∈∈∈∈

==== , 1, ,= ⋅ ⋅ ⋅i N .                                              (35) 

 

REMARK 5 . In addition to (35), the linear inequality constraints (36) can be basically 

added  

0 ( )ξ π π< ≤ i jp s , 1, ,> = ⋅⋅ ⋅j i N ,                                      (36) 

since the well-known variance estimator � �(((( ))))HTVar Y  in (37), given by Yates and Grundy 

(1953) and by Sen (1953) from (11), is defined if 
ijπ 0>>>> , and nonnegative if π π πi j ij≥≥≥≥ . 

 � �(((( )))) π π π
π π π

n n
i j ij ji

HT

i j i ij i j

yy
Var Y

2

1= >= >= >= >

    −−−−
= −= −= −= −        

    
 ,                                (37) 

Also, (38) can replace (36).  

( )ξπ π π π≤ ≤i j i jc p s , 1, ,> = ⋅ ⋅ ⋅j i N ,                                    (38) 

where 0 1< <c . 
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Note that the stability of the variance estimator in (37) may be improved if c  in (38) is 

sufficiently far from 0, as discussed by Hanurav (1967), Nigam, Kumar and Gupta (1984), 

and Rao and Nigam (1992). Thus, the larger value of c is preferred. 

Since 2π =i ip , (36) and (38) can be respectively expressed in forms 

2

4
0 ( )ξ< ≤ i jp s x x

X
, 1, ,> = ⋅⋅ ⋅j i N                                (39) 

2 2

4 4
( )ξ≤ ≤i j i j

c
x x p s x x

X X
, 1, ,> = ⋅⋅ ⋅j i N                                (40) 

The constraints in (39) or (40) can be added to OP1, OP2, and OP3, as in OP4.  

 
 

5. Estimation of Model Parameters 

 
Except for OP3 in Result 1, which is the simplest problem among four optimization 

problems, in order to solve optimization problems such as OP4 in Result 2 as well as OP1 

and OP2 on sampling design ( )ξp s , the estimation of model parameters of not only α  

and β  but also δ  and γ  is essential.  Two approaches for the estimation can be used: (i) 

Maximum Likelihood (ML) Estimation, and (ii) Restricted Maximum Likelihood 

(REML) Estimation. For the method of ML, as discussed by Godfrey, Roshwalb and 

Wright (1984), and Särndal and Wright (1984), the Harvey’s (1976) algorithm can be 

used. His algorithm uses the ordinary least squares (OLS) estimates as the starting values 

for the regression coefficients α  and β , and in each iteration the values of α  and  β  

depend on δ  and γ , or the reverse. The REML estimation was developed by Patterson 

and Thompson (1971), and Harville (1977). The values of α  and β  only depend on δ  

and γ . Harvey’s algorithm for ML estimation can be easily implemented by direct 

programming. Both ML and REML estimation methods based on particular iterative 

algorithms are also available in statistical software programs, for example, PROC 
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MIXED of SAS and “nlme” package of R (http://cran.r-project.org). In the next section, 

we will empirically compare the estimated values of model parameters using ML and 

REML.  

 

6. Empirical Study 

 
The previous model-based π PS sampling methods, OP1 and OP2, the suggested 

model-based π PS  sampling methods, OP3 and OP4, and the conventional design-based 

sampling methods of Mizuno (1952), Brewer (1963) and Murthy (1957) were compared 

for the case of 2=n . The comparison used 18 small natural populations described in the 

paper of Rao and Bayless (1969) and summarized in Table 1. There were originally 20 

populations in their paper, but 2 populations (numbered 6 and 8 in their paper) were 

excluded because the linear model in (9) above was not successfully applied. 

 
Table 1 Description of the natural populations. 

No Source y  x  N  

1 
Horvitz and Thompson 

(1952) 
No. of  Households Eye-estimated no. of Households 20 

2 Des Raj (1965) No. of  Households Eye-estimated no. of Households 20 

3 Rao (1963) Corn acreage in 1960 Corn acreage in 1958 14 

4 Kish (1965) No. of rented dwelling units Total no. of dwelling units 10 

5 Kish (1965) No. of rented dwelling units Total no. of dwelling units 10 

6 Hanurav (1967) Population in 1967 Population in 1957 20 

7 Hanurav (1967) Population in 1967 Population in 1957 16 

8 Hanurav (1967) Population in 1967 Population in 1957 17 

9 Cochran (1963) No. of persons per block No. of rooms per block 10 

10 Cochran (1963) No. of people in 1930 No. of people in 1920 16 

11 Cochran (1963) No. of people in 1930 No. of people in 1920 16 

12 Cochran (1963) No. of people in 1930 No. of people in 1920 17 

13 Sukhatme (1954) No. of wheat acres in 1937 No. of wheat acres in 1936 10 

14 Sukhatme (1954) No. of wheat acres in 1937 No. of wheat acres in 1936 10 

15 Sampford (1962) Oats acreage in 1957 Oats acreage in 1947 35 
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16 Sukhatme (1954) Wheat acreage No. of villages 20 

17 Sukhatme (1954) Wheat acreage No. of villages 20 

18 Sukhatme (1954) Wheat acreage No. of villages 9 

 
 
As an illustration, Figure 1 shows a −x y scatter plot of elements for population 9 in 

Table 1. The superpopulation model in (9) may be applied and the parameters of the 

model can be estimated by ML estimation or REML estimation. 
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Figure 1.  Scatter plot of population 9,  

                                                          Cochran (1963) 
 
 

For the 18 populations in Table 1, Table 2 shows the estimated values of the four 

parameters α , β , δ , and γ  in the superpopulation model (9) when using ML estimation 

and REML estimation. If one judges “the estimates from ML estimation and REML 

estimation are the same” when they coincide by the second digit of each value, of 18 

populations, 8 (44%) for α , 15(83%) for β , 4(22%) for δ , and 3(17%) for γ  are the 

same. Therefore, ML estimation and REML estimation in these populations tend to give 

differing estimates with the exception of β . Also, although Rao and Bayless (1969) 

assumed the superpopulation model (9) with 0α =  for the empirical comparison between  
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five sampling methods including the methods of Brewer and Murthy, most estimates of 

α  are not close to zero, as shown in Table 2. In addition, though 0γ ≥  in the model (9), 

the estimates of γ  lie in the interval (-1.6, 3.6), which includes the negative values, and 

more than half of the estimates of γ  do not lie in the interval (0, 2) or (1, 2) often 

assumed in many references. 

Figure 2 may be helpful to understand an appreciable difference between model-based 

sampling and design-based sampling, although only results for the model-based sampling 

using OP3 are presented for a population. This figure, which is for population 9, shows a 

comparison of the distribution of sampling design ( )p s (i.e., ( )ξp s or ( )dp s ) by ix  and 

jx , the values of the auxiliary variable, and the corresponding variances for model-based 

sampling using OP3 with =c 0, 0.1, 0.2, 0.3, 0.4, 0.5 and the conventional design-based 

sampling methods of Mizuno, Brewer, and Murthy. The model-based sampling design 

( )ξp s  was obtained from OP3 consisting of (41), (42) and (43) or (44), and “LP 

procedure” (or “OPTMODEL procedure”) in SAS/OR was used to find the solution to 

( )ξp s . OP3 was infeasible for the cases with =c 0.6, 0.7, 0.8, and 0.9.  

 

                           Minimize 
1

( )ξ
>


N N

i j i i j

p s
x x

                                              (41) 

subject to  

        ( )ξ i
i s

p s p2
∈∈∈∈

==== , 1, ,= ⋅ ⋅ ⋅i N                                                (42) 

and for 0 1c< < , 

2 2

4 4
( )ξ≤ ≤i j i j

c
x x p s x x

X X
, 1, ,> = ⋅⋅ ⋅j i N                               (43) 

or for 0=c , 
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2

4
0 ( )ξ< ≤ i jp s x x

X
, 1, ,> = ⋅⋅ ⋅j i N                               (44) 

The design-based sampling design ( )dp s  for the methods of Mizuno and Brewer was 

calculated by (3) and (5), respectively. The ( )dp s  for Murthy’s method were computed 

as: 

(2 )
( )

(1 )(1 )

− −
=

− −
i j i j

d
i j

p p p p
p s

p p
                                              (45) 

The variance reported in the box located in the upper right hand corner of each panel in 

the figure is interpreted as follows. “OP3 (=c 0): 5,536,” indicates that the value of the 

variance (((( ))))ĤTVar Y  based on sampling design ( )ξp s  obtained from the model-based 

sampling using OP3 with 0=c  is 5,536. “Mizuno: 6,104” and “Brewer: 6,373” 

respectively denote the value of (((( ))))ĤTVar Y  calculated using sampling design ( )dp s  from 

the methods of Mizuno and Brewer. Also, “Murthy: 6,340” denotes the value of the 

variance �(((( ))))MVar Y  in (46) calculated using ( )dp s  from the method of Murthy.    

�(((( )))) ( )N N
i j i j ji

M
i j i i j i j

p p p p yy
Var Y

p p p p

2

1

1

2= >= >= >= >

    − −− −− −− −
= −= −= −= −        − −− −− −− −     
                              (46) 

 
 

As shown in Figure 2, there is a clear difference between the model-based and design-

based sampling methods. First, the distribution of ( )p s (i.e., ( )ξp s ) for the model-based 

sampling method varies by the value of c . Also, as seen in panels (a), (b), (c), and (d), 

( )p s (i.e., ( )ξp s ) from model-based sampling with =c 0, 0,1, 0.2, 0.3 are scattered over a 

wide range according to the values of ix  and jx  , while ( )p s (i.e., ( )dp s ) from the 

methods of Mizuno, Brewer, and Murthy tend to concentrate in a small range, in spite of  
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Figure 2. Comparison of sampling designs by the values of the auxiliary variable and the 
corresponding variances between model-based sampling method using OP3 with a 
different value of c  and three conventional design-based sampling methods; those 
obtained from conventional methods are repeatedly shown in each panel for the 
convenience of comparison.            
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the changes of those of ix  and jx . This causes a smaller variance for model-based 

sampling and a larger variance for design-based sampling, as seen in the values of the 

variance in the boxes of panels. In contrast, as in panels (e) and (f), the spread of 

( )p s (i.e., ( )ξp s ) from model-based sampling with =c 0.4 and 0.5 and that from the 

design-based sampling methods are more similar, yielding more equal variances between 

them. 

When comparing the six panels in Figure 2, it seems that as regards the value of c , 

there is a trade-off between the reduction of the variance and the stability of the variance 

estimator. The larger value of c  indicates the larger stability of the variance estimator, as 

noted in (38). However, when the value of c  is relatively low, as in panels (a), (b), (c), 

and (d), ( )p s (i.e., ( )ξp s ) obtained from model-based sampling method using OP3 tend 

to be dispersed, resulting in a large reduction in variance, compared to the cases where 

=c 0.4 or =c 0.5.    

Note that with respect to any value of c , model-based sampling using OP3 gives a 

smaller variance than the three design-based sampling methods. Also, it is flexible in 

terms of c . If one pursues the larger variance reduction rather than the stability of the 

variance estimator, using a lower value of c may be appropriate. But if we prefer the 

stability of the variance estimator, a higher value of c can be used, but for the price is the 

larger variance. Anyway, it would offer an optimal sampling design under the chosen 

constraints on the value of c .      

Next, we turn to Table 3, which shows the summary on results of empirical 

comparison on the relative efficiency (RE) for 18 populations for model-based sampling 

methods using OP1, OP2, OP3, and OP4 with =c 0, 0.1, 0.2, 0.3, 0.4, 0.5 and the three 

design-based sampling methods. The model-based sampling using OP1, OP2, and OP4 

denote that only (41) is replaced by (13), (14), and (34), respectively, in OP3 consisting 
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of (41), (42) and (43) or (44). Note that those optimization problems were consistently 

infeasible for the cases with =c 0.6, 0.7, 0.8, and 0.9. The details on Table 3 are 

illustrated as follows:  

For example, “OP1 M” in the table denotes OP1 consisting of the estimates of the 

model from ML estimation, while “OP1 R” indicates OP1 by the estimates from REML 

estimation.  Here, the RE for model-based π PS  sampling is denoted by  

 
�(((( )))) �(((( )))), HTPS PPSRE Var Y Var Yξ π 100    = ×= ×= ×= ×

    
,                                    (47)  

where �(((( ))))
N N

ji
PPS i j

i j i i j

yy
Var Y p p

n p p

2

1

1

= >= >= >= >

    
= −= −= −= −        

    
  , which is the variance of the estimate of the 

population total under PPS sampling with replacement.  

The REs for the design-based π PS  sampling methods of Mizuno or Brewer are also 

computed by (47), and with a distinction, the REs are denoted by 
,πd PSRE  instead of 

,ξ π PSRE . The RE for Murthy’s method, which is a non-π PS  sampling method, is 

calculated by: 

�(((( )))) �(((( ))))M PPS MRE Var Y Var Y 100    = ×= ×= ×= ×
    

.                                   (48)  

According to the empirical study of Rao and Bayless (1969), for 18 populations, PPS 

sampling with replacement always had a larger variance than Brewer’s method. Also, it is 

theoretically clear that �(((( )))) �(((( ))))M PPSVar Y Var Y<<<< .  

The frequencies in column “f” in the table denote the number of populations where   

, ,ξ π π>PS d PSRE RE                                                     (49) 

or   

,ξ π >PS MRE RE                                                      (50) 
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f1 

2 2 2 1 1 4 2 2 2 2 1 2 5 4 2 1 2 2 2 1 0 

f2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 

10 

11 

10 

10 

11 

11 

f3 

3 4 7 3 3 7 7 8 8 

9* 

8 7 8 

12**
 

13**
 

13**
 

14**
 

13**
 

13**
 

14**
 

14**
 

f 

c=
0.3 

3 4 6 3 3 3 4 8 8 7 8 7 4 9 2 2 2 3 3 2 2 

f1 

0 0 0 0 0 1 0 0 0 1 0 0 1 0 2 2 1 1 1 1 1 

f2 

0 0 1 0 0 3 3 0 0 1 0 0 3 3 9 9 

11 

9 9 

11 

11 

f3 

4 4 

9* 

5 5 5 5 7 6 

9* 

9* 

7 7 6 

14**
 

14**
 

14**
 

14**
 

14**
 

15**
 

14**
 

f 

c=
0.4 

4 3 7 5 5 3 3 7 5 7 9 7 6 5 3 3 3 2 2 4 3 

f1 

0 1 2 0 0 2 2 0 1 2 0 0 1 1 1 1 1 2 2 1 1 

f2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 

10 

10 

10 

10 

10 

10 

f3 

7 7 6 6 6 4 3 

9* 

7 

9* 

7 8 6 5 

12**
 

13**
 

13**
 

13**
 

13**
 

13**
 

13**
 

f 

c=
0.5 

7 7 6 6 6 4 3 9 7 9 7 8 6 5 1 2 3 2 2 2 3 

f1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 1 

f2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 

f3 
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For example, the first “16” in terms of “OP1 M” and “Mizuno” in the column of “f” in 

the table indicates that of 18 populations, 16 populations satisfy (49). More specifically, 

for 16 populations, the REs for model-based sampling using “OP1 M” are larger than in 

design-based sampling of Mizuno, whereas for 2 populations they are smaller. 

The frequencies in “f1,” “f2,” and “f3” in the table respectively denote the number of 

populations that are   

, ,0 10ξ π π< − ≤PS d PSRE RE                                               (51)  

or   

,0 10ξ π< − ≤PS MRE RE ,                                                (52) 

 

, ,11 20ξ π π≤ − ≤PS d PSRE RE                                              (53)  

or   

,11 20ξ π≤ − ≤PS MRE RE ,                                                (54) 

and  

, , 21ξ π π− ≥PS d PSRE RE                                                 (55) 

or   
 

, 21ξ π − ≥PS MRE RE .                                                (56)  

 

Here, (51) or (52), (53) or (54), and (55) or (56) denote that the REs on model-based 

sampling are respectively “slightly better,” “much better,” and “very much better,” than 

those on design-based sampling.  Note that f = f1 + f2 + f3. For example, the first “2” in 

the column of “f1,” the first “3” in “f2,” and the first “11” in “f3” in the table indicates 

that of 16 populations in “f,” 2 populations satisfy (51), 3 populations do (53), and 11 

populations do (55).  

The findings from Table 3 are summarized as follows: 
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(1) Model-based sampling methods (using OP1 M, OP1 R, OP2 M, OP2 R, OP3, OP4 M, 

and OP4 R) are consistently more efficient than Mizuno’s method, regardless of the value 

of c . For at least half of 18 populations, they show “very much better” efficiency.   

 
(2) When the value of c  is low, model-based sampling methods are overall more 

efficient relative to Brewer’s method. For some populations, when the value of c  is low, 

the methods using OP1 or OP3 show “very much better” efficiency. Taken overall, 

model-based sampling using OP3 shows a better efficiency than the other model-based 

methods.        

 
(3) Model-based sampling method using OP3 compares favorably with the method of 

Murthy, when the value of c  is low, and for some populations, it has “very much better” 

efficiency as well as “much better” efficiency. Other model-based sampling methods are 

less efficient than the one of Murthy. 

 
(4) As presented in Table 2, ML estimation and REML estimation give different 

estimates of the model in (9), and it seems that model-based methods using optimization 

problems involving these different estimates of the model may yield different efficiencies.  

 
(5) For model-based sampling methods, there is a trade-off between the reduction of 

variance and the stability of the variance estimator because the REs tend to be reduced as 

the value of c  is increased. 

 
 
7. Conclusion Remarks 

 
We have suggested two model-based π PS  sampling strategies using the optimization 

problems of OP3 and OP4. The method using OP3 is empirically preferable to the 

method using OP4, as well as the previous methods using OP1 and OP2. Compared to 



30 
 

others, OP3 is the simpler optimization problem, and it does not depend on the 

parameters in the superpopulation model.  

Those four model-based π PS  sampling methods are flexible in terms of the choice of 

sampling design because one may choose the value of c , which is related to the stability 

of variance estimator. But one should be careful in choosing the value, since there is a 

trade-off between the variance reduction and the stability of the variance estimator. With 

regard to the efficiency, regardless of the value of c , the model-based methods are 

shown empirically to be superior to design-based π PS  sampling of Mizuno, and when 

the value of c  is low, they are preferable to the  one of Brewer. Also, in such a case, the 

method using OP3 is comparable to the method of Murthy. 

There are several issues for a future study. First, in this paper, we assumed only one 

superpopulation model, which may be appropriate for some populations, but may be not 

so for the others. For example, as seen in Figure 2, it seems that the model was suitable 

for the population, because model-based sampling was working well for the variance 

reduction as well as the stability of the variance estimator, compared to the conventional 

design-based sampling methods including Murthy’s method. But there might be certain 

populations where a different superpopulation model is required. For example, a 

polynomial model might be adopted to improve the efficiency of model-based sampling. 

For such a model, we need to develop different optimization problems. Second, we 

should note that it might not be feasible to solve a chosen optimization problem. In such 

cases, a different model assumption should be pursued, likewise. Third, a study on the 

efficiency of model-based sampling methods in for larger sample sizes should be 

conducted. In addition, the comparison of the efficiency of the H-T estimator under the 

model-based sampling and the GREG estimator in the conventional sampling method 

might be another interesting issue.      
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