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Summary

With respect to commonly usedPS sampling techniques, samplers are often
interested in reducing the design variance of tlevitz and Thompson estimator. We
first describe the differences between the mechanisf conventional design-based
7iPS sampling methods of Mizuno and Brewer and two mdbdeled 7PS sampling
methods developed by Kimt al. We also suggest two new model-bagaét sampling
methods, and empirically compare the efficiencythid new methods to the previous
model-based sampling methods and design-bag&cnd non77PS sampling methods.
The case where the sample size is two as in “twosfvatum” designs is of particular
interest for empirical comparison. In regard to thesign variance, model-based
7iPS sampling methods are preferable to design-bagttisampling methods. One of
the new methods performs best. This new methodrgparable to the method of Murthy,
which is a design-based narS sampling procedure. Moreover, model-based sampling
methods are preferable to design-based samplingoagtdue to the flexibility in the
choice of sampling design that has better stalnlitihe variance estimator.

Key words: superpopulation regression model; average variaoptmization; design
variance; stability of variance estimator; maximdikelihood; restricted maximum
likelihood



Résumé

Parmi techniques d'échantillonnage courammenséél, les échantillonneurs sont
souvent intéressés par la réduction de la variasheeplan d'échantillonnage de
I'estimateur de Horvitz et Thompson. Nous décrivdiabord les différences entre les
mécanismes de conception classique fondée sur éhodes d'échantillonnage de
Mizuno et Brewer et deux méthodes d'échantillonnagelées sur un modéle mis au
point par Kim et autres. Nous suggérons égalemeiix chouvellesaux approches
d'échantillonnage fondées sur un modéle, et réaisme comparaisons empirique de
I'efficacité des nouvelles méthodes par rapportraéthodes d'échantillonnage basées sur
un modéle et les approches fondées sur un plarécimmtillonnale. La comparaison
empirique revét un intérét particulier lorsque &llé de I'échantillon est de deux.
S'agissant de la variance du plan d'échantillonndge méthodes d'échantillonnage
basées sur un modéle sont préférables aux méthdoledées sur un plan
d'échantillonnage. Une des nouvelles méthodes ssmglie par sa performance. Cette
nouvelle méthode est comparable a celle méthodehylufondée sur un plan non-
échantillonnale. En outre, les méthodes d'échantihige fondées sur un modele sont
préférables aux approches fondées sur un planisanrde la flexibilité dans le choix du
plan d'échantillonnage pour assurer une meilletafglgé de I'estimateur de la variance.



1. Introduction

Since Hansen and Hurwitz (1943) first suggestedstiection of primary sampling
units from each stratum with probabilities propamtl to size (PPS), a large number of
techniques for sampling without replacement withequal probabilities have been
developed.

As discussed by Brewer and Hanif (1983) and Sar(t@®6), much research on
sample selection has been focused on design-baskedion probability proportional to
size (7PS) sampling procedures in which the second-ordelusien probabilities (or
joint probabilities), which indicate the probahéi that any two units in a population are
both included in a sample, have a key role in theance reduction. For example, the
methods of Mizuno (1952) and Brewer (1963) that duaw-by-draw procedures and
Sampford’s (1967) method, a rejective procedure, aell known 77PS sampling and
commonly employed by samplers. The method of Miz(f@62) is available in the R
package, and the methods of Brewer (1963) and Sathpf967) are available in the R
package and software such as SAS or SPSS. Seelitsgihmmckage of R on the Web
site  of the Comprehensive R Archive Network (CRANghttps://cran.r-
project.org/web/packages/sampling/index.html) an@oriplex Samples” in PASW
Statistics (formerly SPSS Statistics) and SAS/STAa023). Murthy's (1957) method, a
non-77PS draw-by-draw procedure, was noted by Rao and Bay#969) and Cochran
(1977). Murthy's method is available in SAS or SH8Sselecting samples in “two per
stratum” designs.

The comparative efficiency of these techniques otua population sampling
applications is an open question. As seen in mamyirical studies, this may be due to
the fact that the variances of the estimates efr@st calculated from a sample selected

by any sampling method are sensitive to populatioaracteristics, and hence the user



may not be sure that the efficiency of a choserhotketvould be significantly better than
other procedures. This is especially true when allssample is selected from a
population or population stratum. In many natiogafveys, deep stratification with a
substantial number of strata is used, and onlyallsamber of cluster units are sampled
from each stratum. For example, two per stratunigdesare common in stratified cluster
sampling (e.g., see Wu and Thompson, 2020, pp.3J.1&ccordingly, a sampling
method whose efficiency is robust in the case aflssamples would be preferred.

Although a sample is selected from a finite popokatconsidering the concept of an
infinite superpopulation may be useful in the samgglection stage. In fact, an infinite
superpopulation model has been often used in tiv@agon procedures, such as model-
assisted estimation and model-dependent estimd&ianwith regard to sample selection
the model has been used by many writers mainlyhfertheoretical comparisons among
sampling procedures, not for the actual selectfansample.

The model may be used to ensure that the secomud-dndlusion probabilities
involving sampling design implemented by@S sampling procedure would result in
reasonable efficiency. Kinet al. (2006) developed a theory of model-basees
sampling procedures as a specification of the sefeenethod using the model. Their
procedures to yield optimal sampling designs thdtice the variance of the Horvitz and
Thompson (1952) estimator were based on fairlytimadinear superpopulation models
and optimization theory.

In this paper, we first describe the mechanism edigh-based7PS sampling of
Mizuno (1952) and Brewer (1963) and model-bag&$ sampling developed by Kigt
al. (2006). Next, we describe new model-bag#ts sampling methods, and empirically
compare their efficiency to that for the previousdal-based sampling methods and the
conventional design-based sampling methods of Miz(d®52), Brewer (1963) and
Murthy (1957). For estimation of the parametershef superpopulation model in model-
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based approaches, maximum likelihood estimation rastticted maximum likelihood
estimation are used. The case where the samplasste@ is of particular interest for
empirical comparison, both for simplicity and besait is the most important situation in
practice. The model in model-based sampling isbeotentral to the selection problem

and is just a means to the end of achieving higffemiency.
2. Mechanism of Design-BasedPS Sampling

Before presenting model-basetPS sampling procedures in the next section, we first
describe design-basedPS sampling procedures of Mizuno (1952), Brewer ()968d

Sampford (1967).
Consider a finite population dfl units, denoted by ={u,, 0L LU} . v, is the

value of the variable of interesY,, for theith unitu,. In order to estimate the total

N
Y =Zyi , @ samples of sizen is selected from the finite population. L8&tbe the set
i=1

of all possible samples.p(s) (sS), simply called the sampling design (or sampling
plan), is the probability of selecting. In particular, letp,(s) denote the sampling

design in design-basediPS sampling. Let the7z be the first-order inclusion

probabilities, denoted by :; P:(S) | and let the’, be the second-order inclusion

probabilities given by’ =2, P:(9 whenn=2, simply 74 = Py (9) .

i,j0s

The method of Mizuno (1952) far= 2 uses the selection procedure:

N
i. Select the first uniti, with unequal probabilitiegy , wherep. =x / X , X =Z>§ ,

i=1
and x is the value of the auxiliary variabl#, correlated withY .

ii. Select the remaining units with equal prolites.



The 7z and 7T; are respectively:

+(1-p )N—l (1)
_ (-D(N-n) ). (-Dn-2)
'((“+pj)(N—1)(N—2)j+ (N-D(N-2) @)

Forn=2,

7 Dd(S)——(IO P;) 3

In this case the sampling design is a simple fonatif p and p, -

The method of Brewer (1963), which is only fo=2 and everyp, <1/2, has the

more complicated procedure, as follows:

p(-p)
L Sl P ==|1+
i. Select the first unit with probabllltles Ql-2p)’ whereQ = [ El 2pj

ii. Select the second unik with probabilitiesl_pJ

The procedure gives
=2p, (4)

2pp; (@-p-p)
Q (1-2p)1-2p;)

77I-] = pd (S) = (5)

The method of Sampford (1967) is an extension efARr’'s (1963) method to samples
of any size. Design-basedS sampling procedures of Brewer or Sampford have the

properties:



a) The sampling method is a draw-by-draw procedureratone unit is selected

at each successive draw.

b) The sampling desigp,(s), which keeps® =; P:(S) =NP called therPS

requirement, is obtained according to the selectiopbability of each unit

defined for each draw, and is a function of thatre¢ size$. of the units.

A sampler may prefer @PS sampling yielding a smaller design variance. Bsit a
described above, thp,(S) in design-basedrPS sampling is a certain function of the
relative sizesp depending on only the values of the auxiliary ale X, and there is no
definite indication of the strength and directioh a linear relationship between the
variablesX and ¥. Thus, althoughp,(s) plays a central role in the reduction of the
design variance, it is not clear whethgi(s) in any design-basedrPS sampling

procedure would yield a low variance for any popialaof interest.
3. Mechanism of Model-Based7PS Sampling

A generalized regression (GREG) estimator may leeadithe useful estimators for the
population total. But it is well-known that it migtbe appreciably biased for a small
sample, although the bias is in modest for largepbas. As an alternative, the Horvitz-
Thompson (H-T) estimator (1952) in (6), which isiased for the population total and

highly efficient under a goodPS sampling method, can be used.

Vir=) 2 (6)

i=1 7T
The H-T estimator is the only unbiased estimatothim subclass of linear estimators

denoted by



?:gwi @)

wherek is a constant to be used as a weight for tiheinit whenever it selected for the

sample, and hence the best linear estimator ofsthelass (Horvitz and Thompson
(1952), Godambe (1955)). Also, note that best limséimate does not exist for the entire
class of linear estimators (Godambe (1955)).

The variance of the H-T estimator is

Var () =3 4233 Ty e ®
i= 7h =TT
A model-based7PS sampling method was first suggested by Des Rap&)L9L et
P.(S) be the sampling design in his model-bagd sampling, based on the moda#l
denoted byy, =a + Bx reflecting a linear relationship between the JadaX and Y.
His method forn=2 is a variance minimization sampling procedure, clthfirst

constructs an optimization problem consisting obhjective function and constraints in

terms of sampling desigp,,(s) for minimizing Var (\?HT) in (8) under the model. The

method then attempts to obtain an optimal sep,gfs) for all possible samples by linear
programming (LP).
In brief, his 7PS sampling procedure has the properties:
c) Prior the sample selection, the sampling desigfis) =7z, for all possible

samples is determined by LP. It meets th®S requirement, that is,

=Y p,(s)=np

i0s
d) One selection using,(s) samples the whole sampf. This is a whole

sample procedure.



His sampling procedure is attractive with respedht variance reduction achieved by
using the model. But his model is unusual becaheeetis no error term. Kingt al.
(2006) developed a theory of model-bagdelS sampling procedures using an infinite
superpopulation model. They assume that a finipufation of N units is drawn from an

infinite superpopulation with the regression modelgiven by

y,=a+px +¢&, i =L00N, 9)
whereE (&%) =0, Var,(&[x)=0x" (6>0, y20), and E.(£.£|x.,x)=0, i#].
E; andVar, respectively denote the expected value and vaziander the modsf . It

is also assumed that tl#e are normally distributed.

Note that many writers often prefer the model withthe intercept for the purpose of
the simplicity of theoretical comparison betweempgking procedures, while the model
in (9) has the intercept for the practical use.

The variance of the H-T estimator, given by Horéted Thompson (1952), is

~ _ N y|2(1_]TI) N N 77I- N N
Var (YHT)_;T+2ZZIT_7]T]yiyj _ZZZYiyJ' (10)

i=1 j>i 7474 i=1 j>i
A different expression on the variance of the Hstireator, suggested by Yates and
Grundy (1953), is

Var (Vi) =33 (771 —ﬂu)(i—ﬁ]z (1)

g o

With respect to inference, the anticipated varia(®®V), introduced by Isaki and
Fuller (1982), is used as a measure describing/dhi@bility between the total and the
estimator of the total under both the sampling glesind superpopulation model. If the

H-T estimator is used, it simply becomes the awenagriance (AV), that is, the model

expectation of the design variance expressed as



Eng{(\?HT —Yﬂ = €[ Var (Vir )] (12)
where E, denotes the expected value under the samplingrdeand bothy andy
are random variables.

Let P:(S) be the sampling design under model-bag®$ sampling of Kimet al.
(2006) using the regression model They showed that in cases mf 2, an optimal
sampling desigrP;(S) in a set of possiblerPS sampling designs that minimize the AV

in (12) can be obtained by using one of the follmyoptimization problems:

Minimize

v Na+ﬁ( +%,)
I

i=1 j>i

Ps(s), (13)
or

Minimize
N1 o1 1
ZZ[— ——J[a— + ﬁj Pe(9), (14)
i=1 >0 \ X X
subject to the linear equality constraints

2P =7 i =1mmN (15)

ils

Note that the two objective functions in (13) afid)(are induced from the expressions
of Var (\?HT) in (10) and (11), respectively, and hence a difierform ofVar (\?HT)

may yield a different optimization problem. We ctikese two optimization problems

composed of (13) and (15), and (14) and (15), QfellGP2, respectively.

10



4. New Model-BasedPS Sampling

We continue to focus on the design stage for theahselection of a sample from a
finite population, rather than the estimation stalge other words, although the H-T

estimator does not involve the superpopulation rhgdeve assume the model, and seek
to find p,(s) to reducevar (\?HT) for the finite population as well &, [Var (\?HTH for

the infinite population.
Here we first derive objective functions differdrdm those in (13) or (14), and then
construct different optimization problems by addifi$) and additional constraints, as

seen later.

THEOREM 1. With the variance formula in (10), the AV on theTHestimator under the

superpopulation model in (9) is

zN:(X/mq —1)(5>qy+a'2 + 2a8% +ﬁ2>gz)— ZZN:ZN:(a2+aﬂ(>g +xj)+,5’2>qxj)
i=1 i i
L2 X2 Ny n-1 n-1
ZZX 7+ 2apX = =N+ f2X° = (16)
i=1 j>i N J

Proof. Consider the form of the variance of the H-T eation in (10). Since it is7PS
sampling, 77 = np . Then from the first and third terms in (10) untie superpopulation

model, we have

|:ZY. (1-m) ZZN:ZnyJ

i=1l j>i
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=Z(X/m§ _1)Eg(yi2) - ZzzEg(yi yj)

i=1 j>i

i

= X/ =) (% +a” + 2 + B) - 23 (a7 + aB(x +x,) + B%x,)

17)
For the second term in (10), we have
N N 77 2x2 N N E(yy)
E 2 _iny' = s IJ7Ti'
2X2 A& a’ +aB(x + )+ XX,
e
n" =0 XX
20°X* QY 1
= ]'[I'
= szx )
2N N x +X.
+2a,5’2X X +X; 7 (18)
n e XX
n-1
+ 2x2
p n
When the second term in (18) is expanded, it gives
20BX3[ A& 1 Xy | _apxifeid yay
— 7L + —7 | = —>m+)y —)»TT
n2 ZI:J>I XJ ! i ]>i)§ ! n2 _;XJ; ! ZXJZI“ !
apx?[ & 1 N1
= —(m-Ym. +>» — (-1
n2 _ij( ) j Iz)q( ) i
=2a,8XnT_lN of1



This completes the proof.

COROLLARY 1. With the variance formula in (10), the AV on theTHestimator under

the superpopulation model wilga =0 in (9) does not depend o , and is fixed as

Z(X/mg —1)(5>q”+,82>g2)—2,8222x1.xj + 72X Z”T‘l (20)

P>

COROLLARY 2. If the superpopulation model in (9) is assumed, rifigimization of

the AV on the H-T estimator given in (16) is equérd to minimizing

>>-L 39 (21)

i > KX ij0s

Proof. In (16) only the third term depends on, while the other terms do not depend on

Y- and are fixed. Thus, the minimization of the Avi@unts to minimizing (21).

REMARK 1. (21) does not depend an, 5, J, andy, and it is a linear function of

P (s) .

COROLLARY 3. In cases ofh = 2, the minimization of the AV on the H-T estimater i

equivalent to minimizing

N N 1
ZZX—XJ p:(9) (22)

R

REMARK 2. As given in (22), in cases @f=2, the minimization of the AV on the H-T

estimator is reduced to minimizing a simple lin&anction of P () - (22) is the same

13



function as Des Raj (1956) induced to minimizg (\?HT) under the assumption that

=a + Bx Without the error term. See page 198, Des Rajd)L95

RESULT 1. Based on (22), in cases a2, a simple optimization problem to find

model-basedrPs sampling desigrpg(s) , called OP3, can be given by:

Minimize

subject to the linear equality constraints

> ()=, i =1,0IN (24)

iOs
Now we obtain a different AV by using a varianceniddifferent from (10).

THEOREM 2. Using the variance expression in (11), the AV anHRT estimator under

the superpopulation model in (9) is

i=1 i=1

RN ZH[ii(x —x;)(ax‘1+/f)}

20X S 1 S 1 Nn(n- L 1
+ ‘;2 {azz—m-azzjqﬁw_wzz;nﬁ} (25)

Proof. For (11), we may write

var (Vur ) =ZN:ZN:[ op, - J( Y _LJZ (26)

i=1 j>i pi pj
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Since

2

oy, 2 2

E{%—ﬁ] =F(5>gy+a2 + 57X+ 2aPBx) —T(a2+aﬁ(>g +xj)+ﬁ2>ng)
i j I (]

=20X"p' 2 + 2aX? J)g_xx (mg‘1+,8), (27)
Uy

we have

e £3(on-2) 22 ]

-ZJXVZZ P (p p, - il J

i=1 j>i

+ 2ax2[22(p.pj -;TZJX'X XX (ms'l+ﬁ)]

i=1 j>i

)+ ZGXZ[EN:Z xz )gx (m‘_l""g)]

- ZGXZZN:ZN: ah (ax™+8)m,
i=1 51 XX
IX Y N N B
-2 S0 - o £ (s -5 ) +4)
Za’xzii)ﬂ_ (O’)Q_l"',g)ﬂi'j (28)

The last term in (28) can be written in the form

2 Xz N N - _ 2 X N N —X N N yx —X.
Y S axt + p) = [UZZX D) _J””}
i=1 j>i X i i=1 j>i )ﬂ XJ i=1 j>i )QXJ

=20y L -2y Y L +ﬂ[ ZZZ—lﬂ - 222;1" H (29)

n i=1 > X% X i=1 j> X



2 MO0 o5 5k | 0

This completes the proof.

COROLLARY 4 . Under the superpopulation model wigh=0 in (9), (25) reduces to

J_XN N

Y XNT=0) K (31)

n =1 i=1

REMARK 3. (31) is different from (20), due to the differemipeessions for the variance

of the H-T estimator.

COROLLARY 5. Under the superpopulation model in (9), minimizthg AV on the H-

T estimator given in (25) amounts to minimizing

N N 1 N N 1 N N 1
ay Ay Y =26y (32)
i=l j>i 'Xj i=1 j>i )ﬂ i=1l j>i )ﬁ

where 7z =" p,(s)-

i,j0s

REMARK 4. (32) depends ogr and g, and it is a linear function opf){(s) .

COROLLARY 6. In cases oin =2, the minimization of (32) reduces to minimizing

16



ZZ[G{%-%}—M%} P 9 (39

i

RESULT 2. The different optimization problem, called OP4,diatain a model-based

PS sampling desigrpf(s), for the case of =2, is given by:

Minimize
ZZ[a[i—%}—Zﬁﬂ P (34)

subject to

> p(s) =7, i =LOIN. (35)

iOs

REMARK 5. In addition to (35), the linear inequality congtita (36) can be basically
added

0<p,(s)<7m, j>i=1IN, (36)
since the well-known variance estimatgyr (\?HT) in (37), given by Yates and Grundy

(1953) and by Sen (1953) from (11), is definegifs 0, and nonnegative ihi'ﬂj >7T

i) £ (%1 &

i=1 j>i 77; ]7]

Also, (38) can replace (36).

CIETT < pe(S) < 72, j>i =1IN, (38)

wherep<c<1.
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Note that the stability of the variance estimato(37) may be improved i in (38) is
sufficiently far from 0, as discussed by Hanura®§@), Nigam, Kumar and Gupta (1984),
and Rao and Nigam (1992). Thus, the larger valugi®preferred.

Since ;7 =2p , (36) and (38) can be respectively expressedrmgo

0< p{(s)s%xxj, j >i=1,00N (39)

4c 4 L
?XX,-SR:(S)SFXX;’ j>i=10LN (40)

The constraints in (39) or (40) can be added to,@®R, and OP3, as in OP4.

5. Estimation of Model Parameters

Except for OP3 in Result 1, which is the simplesthilern among four optimization

problems, in order to solve optimization problemstsas OP4 in Result 2 as well as OP1
and OP2 on sampling desigh (S), the estimation of model parameters of not afily

and B but alsod and /Y is essential. Two approaches for the estimataombe used: (i)
Maximum Likelihood (ML) Estimation, and (i) Restted Maximum Likelihood
(REML) Estimation. For the method of ML, as disasdy Godfrey, Roshwalb and
Wright (1984), and Sarndal and Wright (1984), thantéy's (1976) algorithm can be
used. His algorithm uses the ordinary least sQqU&ES) estimates as the starting values
for the regression coefficients and 8, and in each iteration the values @fand £
depend ond andV, or the reverse. The REML estimation was develdpedatterson
and Thompson (1971), and Harville (1977). The waloka and S only depend ord
and V. Harvey's algorithm for ML estimation can be egsimplemented by direct
programming. Both ML and REML estimation methodsdsh on particular iterative

algorithms are also available in statistical soffvgrograms, for example, PROC

18



MIXED of SAS and “nlme” package of R (http://crajpmoject.org). In the next section,
we will empirically compare the estimated valuesnwddel parameters using ML and

REML.

6. Empirical Study

The previous model-basedPS sampling methods, OP1 and OP2, the suggested
model-based7PS sampling methods, OP3 and OP4, and the convehitii@ségn-based
sampling methods of Mizuno (1952), Brewer (1963) &turthy (1957) were compared
for the case oh=2. The comparison used 18 small natural populatitessribed in the
paper of Rao and Bayless (1969) and summarizedlimeTl. There were originally 20
populations in their paper, but 2 populations (nared 6 and 8 in their paper) were

excluded because the linear model in (9) abovenstisuccessfully applied.

Table 1 Description of the natural populations.

No Source y X N

1 Horvitz argé;’;ompson No. of Households Eye-estimated no. of Households20

2 Des Raj (1965) No. of Households Eye-estimatecbhHouseholds 20

3 Rao (1963) Corn acreage in 1960 Corn acreag@s8 1 14
4 Kish (1965) No. of rented dwelling units Total b dwelling units 10
5 Kish (1965) No. of rented dwelling units Total b dwelling units 10
6 Hanurav (1967) Population in 1967 Population967 20
7 Hanurav (1967) Population in 1967 Population967 16
8 Hanurav (1967) Population in 1967 Population967 17
9 Cochran (1963) No. of persons per block No. ofws per block 10
10 Cochran (1963) No. of people in 1930 No. of peap1920 16
11 Cochran (1963) No. of people in 1930 No. of peap1920 16
12 Cochran (1963) No. of people in 1930 No. of peap1920 17
13 Sukhatme (1954) No. of wheat acres in 1937 RNeheat acres in 1936 10
14 Sukhatme (1954) No. of wheat acres in 1937 RNeheat acres in 1936 10
15 Sampford (1962) Oats acreage in 1957 Oats azipd®47 35

19



16 Sukhatme (1954) Wheat acreage No. of villages 20
17 Sukhatme (1954) Wheat acreage No. of villages 20

18 Sukhatme (1954) Wheat acreage No. of villages 9

As an illustration, Figure 1 showsya- y scatter plot of elements for population 9 in

Table 1. The superpopulation model in (9) may bgliep and the parameters of the

model can be estimated by ML estimation or REMIlinestion.
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Figure 1. Scatter plot of population 9,
Cochran (1963)

For the 18 populations in Table 1, Table 2 shoves éhtimated values of the four

parametersy, 8, d, and y in the superpopulation model (9) when using Mlineation

and REML estimation. If one judges “the estimatesmf ML estimation and REML
estimation are the same” when they coincide bysieond digit of each value, of 18
populations, 8 (44%) foo, 15(83%) forf3, 4(22%) foro, and 3(17%) fory are the
same. Therefore, ML estimation and REML estimatiothese populations tend to give

differing estimates with the exception @f. Also, although Rao and Bayless (1969)

assumed the superpopulation model (9) with O for the empirical comparison between

20



Table 2 Comparison of estimates of parameters by ML estimation and REML estimation.

a B c?

Population ML REML ML REML ML REML ML REML
1 1.142% 1.1128 1.038% 1.040Z 0.0038 0.0052 2.7462 2.6700
2 0.6482 0.7158 1.1086 1.103% 0.0016 0.0037 3.4297 3.2270
3 25.9265% 25.9044 1.027% 1.027% 0.1988 0.2746 1.6100 1.5724
4 -0.5254 -0.5887 0.5056 0.5478 0.020% 0.051% 2.2976 1.9877
5 -0.8129 -0.8188 0.595% 0.5948 0.1321 0.2054 14111 1.3227
6 185718.5700 176849.3000 1015.363% 1022.8116 0.5370 21.6865 3.2817 2.7914
7 71558.7950 73130.1200 1284.6306 1283.0830 1701.0314 4176.2820 2.2624 2.1570
8 12177.1536 12146.5600 1264.0638 1264.6186 0.0463 128.7146 3.5951 2.4377
9 21.0523 23.3574 1.3594 1.321% 70351.356 5664.530 -1.5640 -0.8888
10 -0.7908 28.9407 1.1797 0.7786 400.9461 0.0011 -0.1311 2.7342
11 5.7650 7.5682 1.225% 1.2164 1251.5417  937.8721 -0.1378 -0.0338
12 18.398¢% 18.6041 1.0607 1.058% 1112.3704  865.6584 -0.1974 -0.1084
13 -16.4124 -16.1364 1.0562 1.0547 0.0801 0.1600 1.6751 1.5885
14 0.8136 0.9784 0.9665 0.9657 5.9355 15.2708 0.8118 0.6624
15 2.3077 2.3128 0.2313 0.2313 0.0092 0.0106 1.939¢ 1.934%
16 220.7632 225.4950 221.2283 219.6092 52872.4720 64098.1500 1.194% 1.117%
17 131.3070 128.5208 258.6386 259.7728 27433.806 34193.550 1.3894 1.2814
18 627.8519 655.1650 283.4577 275.7315 278243.9400317033.9000 -0.4755 -0.3158

# Coincided by the second digit between ML estinaaite REML estimate
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five sampling methods including the methods of Breand Murthy, most estimates of
a are not close to zero, as shown in Table 2. Iitiadd though =0 in the model (9),
the estimates of lie in the interval (-1.6, 3.6), which includesthegative values, and
more than half of the estimates pfdo not lie in the interval (0, 2) or (1, 2) often
assumed in many references.

Figure 2 may be helpful to understand an appreeidifference between model-based
sampling and design-based sampling, although @slylts for the model-based sampling
using OP3 are presented for a population. Thigdigwhich is for population 9, shows a

comparison of the distribution of sampling desig(s) (i.e., p;(s) or p,(s)) by x and
X; , the values of the auxiliary variable, and thereésponding variances for model-based

sampling using OP3 witk=0, 0.1, 0.2, 0.3, 0.4, 0.5 and the conventionaigtesased
sampling methods of Mizuno, Brewer, and Murthy. Thedel-based sampling design

p:(s) was obtained from OP3 consisting of (41), (42) 44d) or (44), and “LP

procedure” (or “OPTMODEL procedure”) in SAS/OR wased to find the solution to

p;(s) . OP3 was infeasible for the cases with 0.6, 0.7, 0.8, and 0.9.

Minimize
N N 1
D> ——p(s) (41)
ij>i )ng
subject to
D p(s)=2p, i =1,0IN (42)
ids
and for0<c<1,
4c 4 L
F)ng < pg(s)sﬁxxj , j>1=100LN (43)

or forc=0,
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0< pg(s)s%xxj, j>i=10ILN (44)

The design-based sampling design(s) for the methods of Mizuno and Brewer was
calculated by (3) and (5), respectively. Thg(s) for Murthy’s method were computed

as:

PP (2-P-P) (45)

P = - p)

The variance reported in the box located in thesupight hand corner of each panel in
the figure is interpreted as follows. “OP8%£0): 5,536,” indicates that the value of the
varianceVar (YHT) based on sampling design.(s) obtained from the model-based
sampling using OP3 witlc=0 is 5,536. “Mizuno: 6,104” and “Brewer: 6,373"
respectively denote the vaIue‘aﬁeﬁr(\?HT) calculated using sampling design(s) from
the methods of Mizuno and Brewer. Also, “Murthy34)” denotes the value of the

varianceVar,, (\?) in (46) calculated using,(s) from the method of Murthy.

var, (¥) =3 5 28 p{%—i—} (@6)

i=1 j>i 2- p p]

As shown in Figure 2, there is a clear differeneaveen the model-based and design-

based sampling methods. First, the distributiorp(d) (i.e., p,(s)) for the model-based

sampling method varies by the valueafAlso, as seen in panels (a), (b), (c), and (d),

p(s) (i.e., ps(s) ) from model-based sampling with=0, 0,1, 0.2, 0.3 are scattered over a

wide range according to the values xfand x; , while p(s) (i.e., p;(s)) from the

methods of Mizuno, Brewer, and Murthy tend to caniae in a small range, in spite of
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Figure 2. Comparison of sampling designs by the values of the auxiliary variable and the
corresponding variances between model-based sampling method using OP3 with a
different value of ¢ and three conventional design-based sampling methods; those
obtained from conventional methods are repeatedly shown in each panel for the
convenience of comparison.
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the changes of those of and x; . This causes a smaller variance for model-based

sampling and a larger variance for design-baseglaagn as seen in the values of the

variance in the boxes of panels. In contrast, apanels (e) and (f), the spread of

p(s) (i.e., ps(s)) from model-based sampling with=0.4 and 0.5 and that from the

design-based sampling methods are more similddigge more equal variances between
them.

When comparing the six panels in Figure 2, it setimas as regards the value of
there is a trade-off between the reduction of #gawnce and the stability of the variance
estimator. The larger value of indicates the larger stability of the variancenaator, as
noted in (38). However, when the valuefs relatively low, as in panels (a), (b), (c),

and (d), p(s) (i-e., p;(s)) obtained from model-based sampling method usiRg @nd

to be dispersed, resulting in a large reductiomanance, compared to the cases where
c=0.40rc=0.5.

Note that with respect to any value ©of model-based sampling using OP3 gives a
smaller variance than the three design-based sagnpliethods. Also, it is flexible in
terms ofc. If one pursues the larger variance reductionerathan the stability of the
variance estimator, using a lower valuecohay be appropriate. But if we prefer the
stability of the variance estimator, a higher vadfie can be used, but for the price is the
larger variance. Anyway, it would offer an optinsmpling design under the chosen
constraints on the value af.

Next, we turn to Table 3, which shows the summary results of empirical
comparison on the relative efficiency (RE) for I&pplations for model-based sampling
methods using OP1, OP2, OP3, and OP4 witiD, 0.1, 0.2, 0.3, 0.4, 0.5 and the three
design-based sampling methods. The model-basedisgnygsing OP1, OP2, and OP4

denote that only (41) is replaced by (13), (14Y &%), respectively, in OP3 consisting
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of (41), (42) and (43) or (44). Note that thoseiroj#tation problems were consistently
infeasible for the cases with=0.6, 0.7, 0.8, and 0.9. The details on Table 3 are
illustrated as follows:

For example, “OP1 M” in the table denotes OP1 ctiimgj of the estimates of the
model from ML estimation, while “OP1 R" indicatedP® by the estimates from REML

estimation. Here, the RE for model-bas@@S sampling is denoted by
RE, e =| Vaies (V) /Var (Yir) [ <200 @7)

2
whereVar,,, (Y) = 122 PP, (%—%J , which is the variance of the estimate of the
i i

Nz =
population total under PPS sampling with replacdmen

The REs for the design-basegbs sampling methods of Mizuno or Brewer are also

computed by (47), and with a distinction, the REs denoted byREd,nPS instead of

RE; s - The RE for Murthy’'s method, which is a ngmPs sampling method, is

calculated by:
RE, = [VarPPS (V) var, (\?)] x100. (48)

According to the empirical study of Rao and BaylEs369), for 18 populations, PPS
sampling with replacement always had a larger madgdhan Brewer’s method. Also, it is
theoretically clear thaar,, (\?) <Var. (\?) .

The frequencies in column “f” in the table dendte humber of populations where

RE; ps > RE s (49)

or

RE; .05 > RE,, (50)
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Table 3 Comparison of frequency of popu

|ations that model-based sampling shows a better efficiency than design-based sampling.

Design- | Model- c=C c=0.1 c=0.2 c=0.2 c=0.4 c=0.t
based | based | f f1 f2 3| f f1 f2 f3|f f1 f2 3| f f1 f2 f3|f f1 f2 3| f f1 f2 {3
OPLNV |16 | 2 3 11|16~ 2 1 13|16~ 5 0 11|14~ 2 1 11|14+ 3 1 1013*| 3 1 9
OPL1F |16 | 0 4 12|16*| 3 1 1216~ 4 1 1114~ 2 1 11/15%| 4 1 10]13*| 2 2 9
OP2N |14 | 3 1 10(13*| 2 1 10014~ 2 2 1013*| 3 1 9 |14~ 2 2 1013~ 2 2 9
Mizuno | OP2F [14** | 3 1 10 |13*| 2 1 10 /14| 2 2 10[(13*| 3 1 9 |14~ 2 2 1013+ 2 2 9
OP: [15**| 0 4 11|16~ 3 1 1216 3 2 11|14~ 2 1 11|14~ 3 1 1013*| 3 1 9
OP4AN |14 | 3 1 10(13*| 2 1 10014~ 3 1 1013*| 2 2 9 |14+ 3 1 1013*| 2 2 9
OP4AF |15 | 4 1 10 |14~*| 3 1 10/14*| 2 2 10[13*| 2 2 9 14~ 3 1 10]12**| 1 2 9
OPIN|12*|5 6 1 |12*| 5 3 4|8|4 4 O0f12*|9 0 3|6|5 1 0|5|5 0 0
OP1F|12*|5 5 210/ 3 3 4|8|3 5 0|8|4 1 3|7|6 1 0|6|6 0 0
opP2v| 8 |6 2 0|8|5 3 0|9|7 2 o|7|7 0 0|77 0 0|88 0 0
Brewer |OP2F| 8 | 6 1 1|6 |4 2 o109 1 0|88 0 0|99 0 0|77 0 O
oP: |10 | 6 2 2 |11 7 1 3 13|11 2 0|9 |7 1 1|97 2 0|9]|9 0 O
oP4nv|10%+| 8 2 O0J11*™*| 9 2 O0|8|6 2 0|88 0 0|65 1 0|77 0 O
OP4F| 9 | 7 2 o0o10~| 8 2 0|9|7 2 0|88 0 0|77 0 0]99]9 0 0
OPLIN| 8 |3 4 1|8|2 3 3|6|4 2 o0|7|4 0 3|53 2 033 0 o0
OPLIF| 9 |3 4 2|82 3 3|7|3 4 o0|7|3 1 3|53 2 o044 0 O
oP2v| 6 |3 3 0|64 2 0|87 1 0|3|3 0 0|55 0 0|66 0 0
Murthy |OP2F| 6 |3 3 0|5|4 1 0|87 1 0|33 0 O0|5|5 0 0|6|6 0 O
op: | 9|5 2 2w+ 7 1 2|8|6 2 0|7|6 0 1|97 2 0|6|]6 0 0
oP4v| 7 |5 2 0|8|7 1 0|53 2 0|4|4 0 0|43 1 0|77 0 o0
OPAF| 7 |5 2 0|87 1 0|6|4 2 0]3]|]3 0 0/4|4 0 0]7]|7 0 0

*exactlyhalf of 18 populations** ovel half of 18 populatior
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For example, the first “16” in terms of “OP1 M” afiglizuno” in the column of “f” in
the table indicates that of 18 populations, 16 paifmns satisfy (49). More specifically,
for 16 populations, the REs for model-based sarmplising “OP1 M” are larger than in
design-based sampling of Mizuno, whereas for 2 ladioms they are smaller.

The frequencies in “f1,” “f2,” and “f3” in the tablrespectively denote the number of

populations that are

0<RE; ;55 = REq ,ps <10 (51)
or
0<RE, ,»s — RE,, <10, 215
11< RE, o — RE, ps < 20 (53)
or
11<RE, . - RE, < 20, 415
and
RE; ,ps = RE; ps = 21 {55
or
RE, ,»s — RE, 221. 6§5

Here, (51) or (52), (53) or (54), and (55) or (8€note that the REs on model-based
sampling are respectively “slightly better,” “mubktter,” and “very much better,” than
those on design-based sampling. Note that f =f4 + 3. For example, the first “2” in
the column of “f1,” the first “3” in “f2,” and thdirst “11” in “f3” in the table indicates
that of 16 populations in “f,” 2 populations sayig61), 3 populations do (53), and 11
populations do (55).

The findings from Table 3 are summarized as foltows
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(1) Model-based sampling methods (using OP1 M, RPOP2 M, OP2 R, OP3, OP4 M,
and OP4 R) are consistently more efficient thanuv@s method, regardless of the value

of c. For at least half of 18 populations, they shoerivmuch better” efficiency.

(2) When the value ot is low, model-based sampling methods are overaltem
efficient relative to Brewer's method. For some glagions, when the value af is low,
the methods using OP1 or OP3 show “very much HBetficiency. Taken overall,
model-based sampling using OP3 shows a betteiiezflig than the other model-based

methods.

(3) Model-based sampling method using OP3 compfanesrably with the method of
Murthy, when the value of is low, and for some populations, it has “very imbetter”
efficiency as well as “much better” efficiency. @thmodel-based sampling methods are

less efficient than the one of Murthy.

(4) As presented in Table 2, ML estimation and REM&timation give different
estimates of the model in (9), and it seems thatelhbased methods using optimization

problems involving these different estimates ofriael may yield different efficiencies.

(5) For model-based sampling methods, there isadetoff between the reduction of
variance and the stability of the variance estimbezause the REs tend to be reduced as

the value ofc is increased.

7. Conclusion Remarks

We have suggested two model-bag#els sampling strategies using the optimization
problems of OP3 and OP4. The method using OP3 igireally preferable to the

method using OP4, as well as the previous methsitgy OP1 and OP2. Compared to
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others, OP3 is the simpler optimization problemd d@h does not depend on the
parameters in the superpopulation model.

Those four model-basedPS sampling methods are flexible in terms of the caaf
sampling design because one may choose the valugwffiich is related to the stability
of variance estimator. But one should be carefuthinosing the value, since there is a
trade-off between the variance reduction and thbilgty of the variance estimator. With
regard to the efficiency, regardless of the valfiec o the model-based methods are
shown empirically to be superior to design-bag#6 sampling of Mizuno, and when
the value ofc is low, they are preferable to the one of Brewdso, in such a case, the
method using OP3 is comparable to the method oftiur

There are several issues for a future study. Rirghis paper, we assumed only one
superpopulation model, which may be appropriateséone populations, but may be not
so for the others. For example, as seen in Figuiteseems that the model was suitable
for the population, because model-based samplirgy warking well for the variance
reduction as well as the stability of the variaesémator, compared to the conventional
design-based sampling methods including Murthy'shoe. But there might be certain
populations where a different superpopulation moidelrequired. For example, a
polynomial model might be adopted to improve tHecieihcy of model-based sampling.
For such a model, we need to develop differentnaipéition problems. Second, we
should note that it might not be feasible to s@vehosen optimization problem. In such
cases, a different model assumption should be pdrdikewise. Third, a study on the
efficiency of model-based sampling methods in fargér sample sizes should be
conducted. In addition, the comparison of the &fficy of the H-T estimator under the
model-based sampling and the GREG estimator inctimventional sampling method

might be another interesting issue.
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