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Summary

It is well-known that probability proportional taze (PPS) sampling methods
without replacement, simply calledPS sampling, frequently provide more
efficient sample estimates than simple random sagoir PPS sampling with
replacement. We investigate methods of allocatargpde size to strata using
super-population regression models that may befioealeto 7PS sampling
methods. This study focuses on Sampford’s methddwis one of the more
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optimal allocation for his method under the assuompthat the values of the
characteristic under study are known. Based on rgersiper-population
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1. Introduction

In stratified sampling the finite population &f units is divided intch strata

of sizesN, , h=1,21MH, and a sample of a chosen sizeis selected within
each stratum. The selections are made independantigtinct strata. Let,,

be the value of the characteristt under study for unit in stratumh. One

of the important roles of the survey sampler isiétermine the values of in

the respective strata, that is, sample allocatidmnch will result in the greatest

precision for sample estimates of true parameteh si$ the population total

H Ny _
Y=>>"y, orthe population meavi=Y/ N.

h=1 i=1
Under stratified simple random sampling (SSRS) auithreplacement the
following sample allocations are appeared in th&oductory texts: (i)
proportional allocation, suggested by Bowley (1926)d (i) Neyman (1934)

allocation. Proportional allocation simply assignsin proportion toN, ,

while Neyman allocation is given by the formula
H
n, =nNhS/h/Z \ARSH (1)
h=1

wheren is the total sample size,

S5 =2 (%~ W N-D), 2)
and
O RWAS 3)



For SSRSwith replacementS, in (1) is replaced byo, , where

Nh —
g% = (¥, —Yn)?I N,. It is noted that Neyman allocation (1) israe optimal

i=1
allocation for minimizing the variance of sample estimatey obr Y . But this

true optimal allocation is not available in praetisince the values &}, (or

those ofy,;) are often unknown.

In such cases what we caltoptimal allocation is an alternative to Neyman
allocation. This method uses the valuges of X , a positive auxiliary
characteristic assumed to be highly correlated Wighcharacteristia under

study. It substitutes,, for S, in (1), namely,

n, = nN, S(h/i N, S 4)

where S2 and X are calculated by the values xf instead of those of,; in
(2) and (3), respectively.

However, if the correlation betweeki andY is not almost perfect, this
allocation is not ‘optimal’, and furthermore, ifete are substantial differences

betweens, ands,, it might result in lower precision for sample ig&ites
compared to proportional allocation. Thus, the stligon of S, for S,

without any valid justification should be avoided.

As an alternative, model-assisted methods withtpa@dvantages ovex-
optimal allocation have been studied. Hanurav (J,96&0 (1968), Reddy
(1976), Rao (1977), Dayal (1985), and Gupt (2008)wsed that a super-

population regression model with respectXoandyY can be appropriately



used for the sample allocation in SSRS. This tepleusing a model is what
we simply callmodel allocation which may be applied to other sampling
methods with efficiency better than simple randa@ampgling (SRS).

It is well-known that under many situations samglistrategies with
varying probabilities such as probability propomib to size (PPS) sampling
with replacement or without replacement provide en@fficient sample
estimates than SRS.

There are a few studies on model allocation irtiird PPS sampling with
replacement. For example, see Rao (1977) and GURA®(1997).

PPS sampling without replacement, simply cali#ts sampling, is often
more efficient than PPS sampling with replacemastdescribed in Rao &
Bayless (1969) and Bayless & Rao (1970). But tlaeesvery few studies on
model allocation in stratifiedPS sampling. Rao’s (1968) study, followed by
Rao (1977), remains valuable. He suggested a nadidehtion approach using
a super-population regression model without theerggipt. The primary
objective of his approach is to minimize the expdctariance of the Horvitz
& Thompson (H-T) (1952) estimator under the model.interesting result is
that his approach always gives the same sampleatibm for all 7PS
sampling methods, as shown in Section 2.

However, his result raises a question: It may b&rdele to introduce an
intercept term into the super-population regressimdel. If the intercept is
included in the model, is sample allocation stietsame for anyzPS

sampling?



Though it is proved in Section 3, the presencéhefihtercept in the model
leads to sample allocation problems that differoading to the chosewPS
sampling method. Thus one would like to pay attentd a specific allocation
strategy appropriate for a giverPS sampling method, in particular, methods
that are popular with samplers.

In fact, a host ofzPS sampling methods have been developed to select
samples of size equal to or greater than two. Sewd& & Hanif (1983). Most
methods for the sample size greater than two areasily applied in practice.
Some of them may construct a good design for redutie variance of sample
estimates compared to alternative methods and \&chiebiased variance
estimation. Among suggested methods, Sampford’67)Lenhethod, which is
the extension of Brewer’s (1963) method and wasudised by Rao & Bayless
(1969), Bayless & Rao (1970), Cochran (1977), Sar(iP96), Smith (2001),
Rao (2005), Tillé (2006), Bondessehal (2006), and Hazizat al (2008), is
the better known to the samplers. His method is eddled the Rao-Sampford
method, since Rao (1965) developed the same prozediabler (1981)
proved that Sampford’s method is always more efficithan PPS sampling
with replacement. His method has not been widegdua the past due to its
computational complexity, but it can be easily iempented with modern
computing power. For example, it is available ia tecent version of SAS or

SPSS or R package “sampfling” (http://cran.r-prog@g/).



Accordingly, we may add a further question: If weeBampford’s (1967)
nPS sampling method, what sample allocation strateggeu the super-
population regression model with the intercept widug followed?

In this paper, we attempt to answer the above westippns. We first begin
by revisiting Rao’s (1968) method in Section 2.skction 3, we show that
under Sampford’s sampling method the introductibthe intercept term into
the model results in allocation problems lookingnpticated, but those that
can be easily solved by optimization approachesettion 4, we illustrate this
model allocation for the finite population genedattom a hypothetical

population.

2. Rao’s method

Let s be a sample of size, drawn from each stratum and le¢) denote a
sampling design such th&(s) gives the probability of selecting under the

given sampling method. Les be the set of all possible samples from each

stratum. The total sample sireis:

n=»n,. (5)

H
h=1

Then the probability that the uniitin the stratunmh will be in a sample,

denotedr, , is given by

M= Y P(9,i=120IN,, h=1,21IH, (6)

iOs, S
which are called the first-order inclusion probaigs.
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Also, the probability that both of the unitsand j in the straturmh will be

included in a sample, denoteg], , is obtained by

= > P(9),i#j=12[IN,, h=12/LH. (7)

i,j0s, sOS

These are termed the joint probabilities or theosdeorder inclusion
probabilities.

As an estimator of the population tota| consider the H-T estimator
H My y
V=Y 2 (8)
Np,
where 77, =n, p,, Py =Xhi/xh v X :Z)%i ,and0< g, <1.
i=1

This estimator is an unbiased estimatolgfwith variance:

var(¥,, )= i

h=1 i=1 j>i

(ﬂhlﬂhj ”hu)(%_ﬁJ ©)

7L,

Rao (1968) considered the following super-poputatiegression model

without the intercept:

Yoi = BX%i + & of1
WhereE‘g(yhi|>§,i):,Bx1i , Vg(yhi|>§ﬂ):az>§’i and Cov‘,(yﬂ, ¥j| X )rqj)=0. Here
E;, V. andCoy, denote the model expectation, variance and cavagigiven
x,’S respectively over all the finite populations ttttmn be drawn from the
super-population3 , o> and g are super-population parameters with>0
andl<g<?2.

Then we have the following expected variance utitemodel (10):



Evar( Y, ) =h§;i(71h—1] % (11)

To minimize (11) subject to the condition (5), wsthe Lagrange multiplier

A, consider

h=1 i=1 nh phi

EH:N"( —1)azxgi+a(hz:nn-n). (12)

Equating (12) to zero and differentiating with respto n,, we have

1 Ny, O.ZXE
n =—— —n 113
NG \/zl Py

Substitutingn, in (5), we have

s (14)

Replacingl/~/4 in (13) with (14), eventually we have the follogimodel

allocation in each stratum:

Ny,
xhz Xt?i_l
n, = nHi;1N . (15)
3 %3

=i =
With the assumptioW, (y,|%;) =\ %), wherev()J is a given function, Rao

(1977) obtained a form different from (15). Notattif g =2, (15) reduces to:
Xh

;
2%,

h=1

n,=n , (16)

which is calledx-proportional allocation to the stratum.



Looking at the expected variance in (11) and thdehallocation in (15), it

does not involve the joint probabilitieg; in each stratum. It indicates that

under the model without the intercept (10) the Hpmesampling design

properties of a givemPS sampling method that determine thg are not

reflected in the sample allocation, resulting ie same sample allocation for
any 7PS sampling. Hence the following issues, as mentiomedthe

Introduction, are of interest:

(a) The super-population regression model which roag wish to employ in
many surveys will be:

Yo =0+ BX; &y, (17)
which is a general form and (10) is a special favfn(17) whena =0.
Considering the intercept term, we need to reexamine the most appropriate
sample allocation strategy for stratifiedPS sampling.

(b) It will be shown in the following section thasing (17) gives a sample

allocation involving the joint probabilities;; depending on the choserPs

sampling. If we focus on Sampford’s (1967) method A#PS sampling, what

sample allocation strategy would be appropriate?

Section 3 will address these issues of sampleaitmt

3. Alternative sample allocations under stratified7zPS sampling



As mentioned above, Neyman allocation (1) isttine optimal allocationfor
SSRS. Since Rao (1968) and Rao (1977) did not wéhl what thetrue

optimal allocationis for stratified 7PS sampling, we describe it first.

3.1. True optimal allocation

Assume that the values of, are known. Instead of (9) we consider the

following form of the variance of the H-T estimator
N

Var(\?HT) = ZH:

h=1 i=1

;—5 th;Nz ZZZZ Yi ¥ = ZZZZ %y (18)

i= h=1i=1j>i r[hlrrhj =1j>
Since the second and fourth terms in (18) are iedéent ofn, , the
minimization of the variance of the H-T estimatortérms ofn, reduces to the

minimization of

Vi - (19)

H Np /2 H Ny Ny
;n_]; i=1y_hl. ZhZ‘i NG Hu pu
Unfortunately, with the Lagrange’s multiplier methar other simple
methods, one cannot derive an allocation formuléh wespect ton, for
minimizing (19) under the condition (5), duedg of the second term in (19).
Moreover, the joint probabilities; of the second term in (19) should be
evaluated according to the choseRS sampling method.
We focus on Sampford’'s (1967) method. Under thishoeen, units are

selected with replacement in each stratum. The first in stratumh is

selected with probabilityp, and all subsequent units with probabilities
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N,
Ai/ DA, where, =p, /(1-n,p,;). Any sample that does not contain

i=1
distinct units is rejected. It is noted that =n, p, for his method.

Because the exact calculation of gj} for his method is complicated and

computationally prohibitive, the following approxate expression correct to

O(N,*) under the assumptions that ) is small relative taN, and (ii) p, is

of O(N;*) is useful:

Ty = (0, ~ 1) By Ry L+H{C R+ mj)—Z_h] A
+H2( pr?i + F%z,) _22 ka -(n,-2) p, Ry (20)

+n,=3)(A, + B B (030 AN

This approximation was derived by Asok & Sukhatm®76) based on an
asymptotic theory.

When substituting (20) forz; in (19), we have

Hoq M yz_ H Ny Ny 1
z_ i"'2222(1__)(nhﬂhijl +7Thijz) Yoi ¥y (21)
h=t My =1 P h=1i=1 j> n,
where
Ny N,
Thyiq =(py * pnj)z ka — R Ry _(Z "ﬁk)z (22)
k=1 k=1
and

N, .
7, =14+{(py + ) _kZ:;‘ T} +2(p + }qu)—ZkZ:;‘ o

11



N, N,
+2p, Py — 3R + By )kZ rﬁk+3(k2 K )
=1 =1

(23)
From (21), we can derive the form (24) in termsnpf which is the

objective function of the optimization problem (nonlinear programming

problem):
Minimize
S LSV, o Y L1
Z_ _I+zznhzzﬂhi113/hi Wy — 2 _zzn;wijZ Yi ¥i (24)
b=t My =1 Phi h=1 =1} h=1 Mhi=1i>

’
subject to) n, =nin (5).
h=1

The solutionn,, h=1,2[0H , to this optimization problem will be theue

optimal allocationfor minimizing the variance of the H-T estimatonder

Sampford’s method for stratified sampling.

3.2. Model allocations

Because the values gf, are often unknown, the optimization problem dedine

above may not be applied in practice. Instead geras two different super-

population regression models involving an interd¢epn:

Model:l
Y, =a+Bx,+&,, h=12[00H, i =1,IN,, (25)
where ¢, is numerically negligible, that is; perfectly explainsy.
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Model II;

Yo, =a+pBx, +&,, h=1200H, i =1,2/IN, (26)

where E; (yy [ %, )=a+ 8%, Ve (W |%)=0"%, andCovg(y“, ¥j| % ;q,)zo.

Model Iwas used by Des Raj (1956he model (10) is the special case of
the Model Il, wherea =0. Model Il was assumed by Reddy (1976), Rao
(1977) and Dayal (1985) for the sample allocatiodar SSRS. Assume that

the values ofx, and the super-population parameters are knowrht®rtwo

models.

Theorem 1. Under the Model |, the sample allocation problent fbe
minimization of the expected variance of the H-fimedor under any7PS

sampling is equivalent to minimizing

e @
where
and
B, = X, (Nzl(”i(hﬂ—ﬂz Xh]- (29)

13



Proof. Consider the four terms in the right-hand sidexgiression (18) for the
variance of the H-T estimator. The expected vaéaﬁp/ar(iﬁ) under the
Model | is the sum of the expected values for those teums. The expected

values for the second and fourth terms in (18)ka@wn values that do not

involve n,, and those for the other terms in (18) do depemah ocand are

given by:

b= Ny =2 Xpi i=1 > Xi % =1 h=1 rﬂ

& X, Ny (@+Bx%,)* X2 U S g +af(x, + X%,) B
(30)

which is derived from the fact thiz L =n(n =1/ 2.

i=1 j>i

H
Since g*)’ X? is also known, the quantity to be minimized in)(80

h=1

[Z Z(awxh)] [22 K@) s K] oy

el e i=1 > Xi %y h=x I}

The proof follows from substitution of (28) and }28 (31).

Remark 1. The minimization of the expected variance in ®rmfn, under

the Model | with the intercept term reduces to minimizationtloé function

(27), which involves the joint probabilitieg, in each stratum that in turn

depend on the choserPS sampling method.
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Remark 2. The minimization of (27) in terms of under the condition (5) is

a simple optimization problem because #ein (28) and theB, in (29) are

known values.

From (20) and (27) we obtain the following theorem.

Theorem 2.Under the Model I, the sample allocation problenmtimimize the

expected variance of the H-T estimator under Sardjgfanethod when using

the joint probabilities, correct toO(N;*) given in (20) is equivalent to

minimizing

where

and

Zchnh + Zn_7 263
C, = 22‘: Zh:{ a’+ ap(x, + X )} T (33)
D, =B, - Zii{az +ap(x, + X )} Ty - (34)

i=1 )i

Proof. Substitutingzz,, from (20) in (28) for the first term of (27), wave

(1-5)22{672 + B0+ %))} (Vs + 7232)

i=1 j>i

=2 ZH:%h:Znh{a +ap(x, + )gu)}ﬂhlll

h=1 i=1 j>i

Np Ny

+2ZZZ{” +aB(% + %)} 7,

h=1 i=1 j>i

15



(35)

_zzzhzh{a +aﬁ(xh| + )%J)} hij1

h=1 i=1 j>i

Ni Ny

-222'2%{”2 +aB(%, + %)} 7y

Since the second and third terms in (35) are thewhkn values, the

minimization of (35) reduces to minimizing:

ZZniZ"{a + P06+ 5} = 235 S + @, + R} s - (36)

h=1 i=1 j>i h=1 hIlJ>I

Adding ZB" in (27) to (36), we have the following minimizatigroblem

hlh

corresponding to the minimization of (27):

ZZnhZhZ“{a + aB(%y + %) s

h=1 i=1 j>i

(37)

Z [B Zzh:zh:{a +a',6’(xhl+)gu)} iz

hl i=1 j>i

This completes the proof.

Remark 3. The minimization of (32) under (5) is a simpleeaation problem

in terms ofn, because th€, in (33) and theD, in (34) are the known values.

Remark 4. We can define the following optimization problevith respect to
n,:

Minimize

Z:Chnh +Z— 138

16



’
subject tod n, =nin (5).
h=1

In addition to (5), the following conditions can aeded:

n < N,, h=1,2,0mH (39)
and

n,=2, h=12/00H . (40)

Also, other possible conditions will be:

n, p, <1, i=1,20IN,, h=1,200H . (41)

The optimization problem in Remark 4 may be eakdyndled by convex
mathematical programming algorithms and the salutemthe problem would
provide an efficient sample allocation strategy emtheModel | when using
Sampford’s sampling procedure.

We obtain the following theorems regarding the miaation of the
variance of the H-T estimator inPS sampling under the assumption\dddel

II, which is more practical thaviodel |

Theorem 3.Under Model II, the sample allocation problem fonimizing the
expected variance of the H-T estimator under af®g sampling amounts to

minimizing

IAEOIS 2)



where

A =2aX2 Y (%= x) (@ %+ B) m,

=L j>i

and

By using

Egyr?i :Uz)ﬁ +a2+182)ﬂzi +2ap ¥
and

E:(Yu W) =a” +aB( + %)+ 5% % %,
we obtain

17N

2
E(Z‘H =20} i+ 20 X a5 ).
hi j

Then we get:

~ H N, N, ) =X
EEVar(YHT) =A,+ ZUhZ_;, Xf[ZZ( Phi By ‘”—TJM(U X +,3)]

m, Xi X

i=1 j>i

h=1\_i=1 j>i

=n, +2ai(%%(xm =% ) (@ +5)J

18
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2Nh N,

+2az ZZ( ><,jﬁ)(a>gi1+,8) Tty

h=1 h i=1 j>i
where

) H Nh Nh m"
R OWN [pn. pm——;)
]

h=1 i=1 j>i h

—UZZZ—(l NP P

h=1 i=1

= JZZH:—“Zxﬁi'l - JZEH:Z X3 (50)

Since the second term in (49) and the second ter(®80) are independent of

n,, the minimization of the expected variance of (&gjuces to minimizing:

G DMCRS CALEAO O LI

Since (51) equals (42), the proof is completed.

Remark 5. Under Model Il with the intercept term the minimization of the

expected variance in terms nf amounts to the minimization of the function

(42) involving the joint probabilities, which diffeaccording to the chosen

7PS sampling method.
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Remark 6. Since theA, in (43) and theB, in (44) are the known values,
minimizing (42) in terms ofn, subject to the condition (5) is a simple

optimization problem.

Remark 7. A, in (50) is an alternative form to (11), which tetexpected

variance of the H-T estimator under the model (@idhout the intercept term.
Hence the expected variance of the H-T estimataleullodel 1l with the

intercept term consists of (11) plus the additideains, as shown in (49).

Corollary 1. Under the Model Il withe =0, the sample allocation problem for
minimizing the expected variance of the H-T estmatnder any 7PS

sampling is equivalent to minimizing:

L Xh < -1
PRIl 25

Proof. When a=0, (49) in Theorem 3 reduces to simgly, which is

expressed as (50). The second term in (50) doesleend om,, and the

minimization of (50) reduces to the one of (52)nide, we have the corollary.
Remark 8. (52) does not depend on the joint probabilities.

Remark 9. It is interesting to note that when solving fgr by using the

Lagrange multiplierd to minimize (52) subject to the condition (5)gives

20



(15), which is the sample allocation under the ndti@). This is because the

model (10) isModel Il with a =0.

Theorem 4. Under Model Il, the sample allocation problem fan$ford’s
sampling method in minimizing the expected variapicéhe H-T estimator,

when using the joint probabilities (20) correct @&N,*), is equivalent to

minimizing:
Sein+ 32 {53
h=1 h=1 My
where
=203 3 (%~ 1) (@5 )}, (54
i=1 j>i
and
D; = B; _Za_zhi{(xhi - )ﬁwj)(a )91 + :3) r[hijZ} . (55)
i=l j>i

Proof. Substituting (20) in the first term of (42) andngi(22) and (23), we

obtain

i% Z Ko (n, - 1)Zh]Zh]{(xm %) (@ 5+ B) m m( W + 7))

i=1 j>i

=23 1- L35 (5, ) (o +£) (v 7. )

h=1 nh i=1 j>i

<2050 33 (5, 5o +4) )

h=1 i=1 j>i

+20fzzh:zh:{( )(ax:il +,8) 7ijz}

h=1i=1 j>i

(56)
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25 (s -5 )5+ )

‘2"; ZZ{(xh %) (@5 +8) )

Since the second and third terms in (56) are inudpat of n, , the
minimization of (56) reduces to minimizing the atherms:

ZUZnhzh:zh{( )(a)ﬁ_il"'ﬁ)ﬂhijl}

h=1 i=1 j>i

(57)

-2a2 : ZZ{(Xh X ) (@ + B) )

h=1 h|l]>|

Thus, the minimization of (42) with (43) and (44)@unts to minimizing

2§ a3 (x-)(ex + o))

h=1 i=1 j>i

—ZaZ L3 S (0 -, ) (@ + ) o) (58)

h=1 h i=1 j>i
H
B,
Z_
h=1
Accordingly, the following reduced form from (5&rcbe obtained.

Zaznhzh:zh:{( )(a){lil-'-ﬁ)ﬂhijl}

h=1 i=1 j>i

(59)

T [ g -203 3 () (ki +4)m, }]

i=1 j>i

Hence, we have proved the theorem.
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Remark 10. Since theC, in (54) and theD; in (55) are the known values, the

minimization of (53) subject to (5) is a simpleoaktion problem in terms of

n, -

Remark 11. In order to find a solution fon,, we may define the following

optimization problem:
Minimize
> Cn+y = of6
H
subject tod n, =nin (5).
h=1

The solution to this optimization problem easilylved by convex
mathematical programming algorithms will provide aptimum sample
allocation underModel 11 in using Sampford’s method. As discussed in

Remark 4, the conditions (39), (40) and (41) caalbe used with preferences.

4. Simulations

To examine sample allocation under Sampford’'s ntgthee considered the
super-populatiomModel 1l given in Hanseret al. (1983, p. 781): the positive
auxiliary characteristicX has a gamma distribution with density function

0.4x, exptx, /5and the characteristie' under study, conditional oX , has
a gamma distribution with density functidr(b°r (c)) y;* expE y, /b)where

b=1.255% (8+ 5, )" andc=0.04x>"% (8+ 5x, ¥. Accordingly,
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Eg(Yhi|)§n) =0.4+ 0.25, (61)
and

Ve (Y| %) =0.0625¢/2. (62)

Finite populations with sizes 30, 60, 90, 120, 1880, 210, 240, 270, and
300 were generated from the super-population. Eheevof the characteristic
X is assumed to be known for each unit in eachefipgpulation. Each finite
population was divided into 3 strata and each wtnatas the same size (e.g.,
10, 10, and 10 for size 30). We considered twogygfestratification: (A) The
units in the finite population are arranged in @asing order of the value of

X and the firstN, are considered as stratum 1 and the se®gnds stratum 2
and the remaininy, as stratum 3; (B) The units in the finite popwatiare

randomly assigned to each stratum.
Before selection, the units in each stratum werangied in increasing order

of the value ofX, so thatx, < x, <[Ix x, . The total sample size for each

population is 10 percent of each population sizg,for the three population
sizes 30, 60 and 90,=10, which is to be allocated so that at least twdsuni
are to be chosen from each stratum.

The comparison between the true optimal allocataord the model
allocation according to the type of stratificatisrgiven in the following tables.
The true optimal allocation is the solution to thimization problem given
by the minimization of (24) subject to (5), whileet model allocation is the

solution to that given by the one of (60) under {®)Remark 11. Those
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solutions satisfyingn, p, <1 were obtained using ‘nonlinear programming

(NLP) Procedure’ of SAS/OR running convex matheoatiprogramming

algorithms. See SAS/OR (2018).

TABLE 1

Comparison of true optimal allocation and modebeltion
for Stratification Type A

True Optimal Allocation Model Allocation

N n R.E.
n n, n n n, N

30 1C 2 3 5 2 3 5 1.000(
(1.64) (3.29) (5.07) (2.13) (3.12) (4.75)

60 1C 2 3 5 2 3 5 1.000(
(1.57) (3.36) (5.07) (2.06) (3.05) (4.89)

90 1C 2 3 5 2 3 5 1.000(
(1.63) (3.19) (5.18) (1.85) (2.87) (5.28)

12¢ 12 2 4 6 2 4 6 1.000(
(1.97) (3.79) (6.24) (2.28) (3.40) (6.32)

15C 15 2 5 8 3 4 8 1.001:
(2.41) (4.43) (8.16) (2.90) (4.26) (7.84)

18C 18 3 5 10 4 5 9 1.023:
(2.93) (5.20) (9.87) (3.42) (5.16) (9.42)

21C 21 3 6 12 4 6 11 1.010:
(3.29) (5.71) (12.00) (3.95) (5.97) (11.08)

24C 24 4 7 13 5 7 12 1.018¢
(3.85) (6.83) (13.32) (4.70) (6.91) (12.39)

27C 27 4 8 15 5 8 14 1.002¢
(4.36) (8.05) (14.59) (5.27) (7.76) (13.97)

30C 30 5 9 16 6 9 15 1.009:

(4.98) (9.01) (16.01) (5.94) (8.60) (15.46)
Note: Figures in parentheses are unrounddukes and R.E. is the relative efficiency
calculated as the variance (9) for model allocatitivided by that for true optimal
allocation.

Table 1 for stratification type A shows that foetfirst four populations, the
true optimal allocation and model allocation code;i and for the other

populations, the two allocations are very similesulting in the relative
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efficiency (R.E.), defined as the variance of thel Hestimator for model
allocation over that for true optimal allocatiomifg equal to 1 or very close to
1. Table 2 shows that for stratification type B thedel allocation for the first
two populations is slightly different from the trogtimal allocation, and for
the others the two allocations are equal. Accollgingshows that the model

allocation is a good alternative to the true optiatcation.

TABLE 2

Comparison of true optimal allocation and modebeltion
for Stratification Type B

v True Optimal Allocation Model Allocation RE
n n, n n n, N

30 10 3 4 3 3 3 4 1.108:
(2.52) (4.11) (3.37) (2.82) (3.51) (3.67)

60 10 3 3 4 3 4 3 1.038¢
(3.50) (2.97) (3.53) (3.27) (3.50) (3.23)

90 10 3 3 4 3 3 4 1.000(
(3.13) (3.24) (3.63) (3.26) (3.16) (3.58)

12¢ 12 4 4 4 4 4 4 1.000(
(4.15) (3.56) (4.29) (4.18) (3.86) (3.96)

15C 15 5 5 5 5 5 5 1.000(
(5.16) (4.48) (5.36) (5.23) (4.81) (4.96)

18C 18 6 6 6 6 6 6 1.000(
(5.59) (5.99) (6.42) (5.96) (5.99) (6.05)

21C 21 7 7 7 7 7 7 1.000(
(7.26) (6.67) (7.07) (6.84) (7.29) (6.87)

24C 24 8 8 8 8 8 8 1.000(
(7.57) (8.02) (8.41) (8.29) (7.70) (8.01)

27C 27 9 9 9 9 9 9 1.000(
(8.42) (9.37) (9.21) (9.11) (8.96) (8.93)

30C 30 10 10 10 10 10 10 1.000(

(9.65) (10.08) (10.27) (10.45) (9.68) (9.87)
Note: See Table 1

26



5. Concluding remarks

We have addressed the topic of efficient samplecation in stratified
samples using more general super-population regreseodels than those
investigated by Rao (1968). Under more general fsotleat include an
intercept term, we have developed several theotkatsare useful for deciding
sample allocation in7PS sampling designs. Also, through the theorems we
have shown how to apply this sample allocation ihéar Sampford’s (1967)
sampling method, one of the more commmaPS sampling designs used in
survey practice.

Based on the theorems developed in this paperophiization problem
with respect to the stratum sample sizes can beeddby using software
involving convex mathematical programming algoriflimThis is a
straightforward approach for sample allocation whsimg more efficientzPS
sampling methods.

Also, although we assumed that the super-populg@ameters are known
for the two models, they can be estimated in prtactncluding Harvey (1976),
Godfrey et al (1984), and Sarndal & Wright (1984), there woblel many
useful references for estimation of model pararseter

In addition to Sampford’ sampling, the approach barapplied to a variety
of nPS sampling without replacement designs. In futurerkywot will be
important to extend the theory and methods dedtribere to allocation
problems under more complicated super-populatiordeiso and situations

where the super-population model can vary acrassastThe approach may
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also be useful in implementing more sophisticatedresy designs such as
responsive designs, suggested by Groves and Hee(R{@P6), to achieve

higher quality statistics.
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