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Summary 

It is well-known that probability proportional to size (PPS) sampling methods 

without replacement, simply called PSπ  sampling, frequently provide more 

efficient sample estimates than simple random sampling or PPS sampling with 

replacement. We investigate methods of allocating sample size to strata using 

super-population regression models that may be beneficial to PSπ  sampling 

methods. This study focuses on Sampford’s method, which is one of the more 

popular PSπ  sampling methods among practitioners. We present the true 

optimal allocation for his method under the assumption that the values of the 

characteristic under study are known. Based on general super-population 

regression models with the intercept term, overlooked in the previous studies, 

we derive new alternatives to the true optimal allocation that may be easily 

solved by convex mathematical programming algorithms. We illustrate this 

model allocation for finite populations generated from a hypothetical 

population.   
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1. Introduction  
 

In stratified sampling the finite population of N  units is divided into h strata 

of sizes hN , 1,2, ,= ⋅⋅ ⋅h H , and a sample of a chosen size hn  is selected within 

each stratum. The selections are made independently in distinct strata. Let hiy  

be the value of the characteristic Y  under study for unit i  in stratum h . One 

of the important roles of the survey sampler is to determine the values of hn  in 

the respective strata, that is, sample allocation, which will result in the greatest 

precision for sample estimates of true parameter such as the population total 

1 1= =
=

hNH

hi
h i

Y y  or the population mean /=Y Y N.  

Under stratified simple random sampling (SSRS) without replacement the 

following sample allocations are appeared in the introductory texts: (i) 

proportional allocation, suggested by Bowley (1926), and (ii) Neyman (1934) 

allocation. Proportional allocation simply assigns hn  in proportion to hN , 

while Neyman allocation is given by the formula  

1

/
=

= 
H

h h yh h yh
h

n nN S N S ,                                             (1) 

where n is the total sample size,   

                                      2 2

1

( ) /( 1)
hN

hyh hi h
i

S y Y N
=

= − − ,                                       (2) 

and  

1

/
=

=
hN

h hi h
i

Y y N .                                                         (3) 
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For SSRS with replacement yhS  in (1) is replaced by σ yh , where 

2 2

1

( ) /
hN

hyh hi h
i

y Y Nσ
=

= − . It is noted that Neyman allocation (1) is a true optimal 

allocation for minimizing the variance of sample estimates of Y  or Y . But this 

true optimal allocation is not available in practice, since the values of 2yhS  (or 

those of hiy ) are often unknown. 

In such cases what we call x-optimal allocation is an alternative to Neyman 

allocation. This method uses the values hix  of X , a positive auxiliary 

characteristic assumed to be highly correlated with the characteristic Y  under 

study. It substitutes xhS  for yhS  in (1), namely,  

1

/
=

= 
H

h h xh h xh
h

n nN S N S                                              (4) 

 where 2
xhS  and hX  are calculated by the values of hix  instead of those of hiy  in 

(2) and (3), respectively.   

However, if the correlation between X  and Y  is not almost perfect, this 

allocation is not ‘optimal’, and furthermore, if there are substantial differences 

between xhS  and yhS , it might result in lower precision for sample estimates 

compared to proportional allocation. Thus, the substitution of xhS  for yhS  

without any valid justification should be avoided.  

As an alternative, model-assisted methods with practical advantages over x-

optimal allocation have been studied. Hanurav (1965), Rao (1968), Reddy 

(1976), Rao (1977), Dayal (1985), and Gupt (2003) showed that a super-

population regression model with respect to X  and Y  can be appropriately 
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used for the sample allocation in SSRS. This technique using a model is what 

we simply call model allocation, which may be applied to other sampling 

methods with efficiency better than simple random sampling (SRS).  

It is well-known that under many situations sampling strategies with 

varying probabilities such as probability proportional to size (PPS) sampling 

with replacement or without replacement provide more efficient sample 

estimates than SRS.  

There are a few studies on model allocation in stratified PPS sampling with 

replacement. For example, see Rao (1977) and Gupt & Rao (1997).  

PPS sampling without replacement, simply called π PS sampling, is often 

more efficient than PPS sampling with replacement, as described in Rao & 

Bayless (1969) and Bayless & Rao (1970). But there are very few studies on 

model allocation in stratified π PS sampling. Rao’s (1968) study, followed by 

Rao (1977), remains valuable. He suggested a model allocation approach using 

a super-population regression model without the intercept. The primary 

objective of his approach is to minimize the expected variance of the Horvitz 

& Thompson (H-T) (1952) estimator under the model. An interesting result is 

that his approach always gives the same sample allocation for all π PS 

sampling methods, as shown in Section 2. 

However, his result raises a question: It may be desirable to introduce an 

intercept term into the super-population regression model. If the intercept is 

included in the model, is sample allocation still the same for any π PS 

sampling?  
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Though it is proved in Section 3, the presence of the intercept in the model 

leads to sample allocation problems that differ according to the chosen π PS 

sampling method. Thus one would like to pay attention to a specific allocation 

strategy appropriate for a given π PS sampling method, in particular, methods 

that are popular with samplers.   

In fact, a host of π PS sampling methods have been developed to select 

samples of size equal to or greater than two. See Brewer & Hanif (1983). Most 

methods for the sample size greater than two are not easily applied in practice. 

Some of them may construct a good design for reducing the variance of sample 

estimates compared to alternative methods and achieve unbiased variance 

estimation. Among suggested methods, Sampford’s (1967) method, which is 

the extension of Brewer’s (1963) method and was discussed by Rao & Bayless 

(1969), Bayless & Rao (1970), Cochran (1977), Särndal (1996), Smith (2001), 

Rao (2005), Tillé (2006), Bondesson et al. (2006), and Haziza et al. (2008), is 

the better known to the samplers. His method is also called the Rao-Sampford 

method, since Rao (1965) developed the same procedure. Gabler (1981) 

proved that Sampford’s method is always more efficient than PPS sampling 

with replacement. His method has not been widely used in the past due to its 

computational complexity, but it can be easily implemented with modern 

computing power. For example, it is available in the recent version of SAS or 

SPSS or R package “sampfling” (http://cran.r-project.org/).  
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Accordingly, we may add a further question: If we use Sampford’s (1967) 

π PS  sampling method, what sample allocation strategy under the super-

population regression model with the intercept would be followed? 

In this paper, we attempt to answer the above two questions.  We first begin 

by revisiting Rao’s (1968) method in Section 2. In section 3, we show that 

under Sampford’s sampling method the introduction of the intercept term into 

the model results in allocation problems looking complicated, but those that 

can be easily solved by optimization approaches. In section 4, we illustrate this 

model allocation for the finite population generated from a hypothetical 

population.   

 

2. Rao’s method 

 
Let s  be a sample of size hn  drawn from each stratum and let ( )⋅P  denote a 

sampling design such that ( )P s  gives the probability of selecting s  under the 

given sampling method. Let S be the set of all possible samples from each 

stratum. The total sample size n  is:  

1=

=
H

h
h

n n .                                                     (5) 

Then the probability that the unit i  in the stratum h  will be in a sample, 

denoted π hi , is given by 

                          
,

( )π hi
i s s S

P s
∈ ∈∈ ∈∈ ∈∈ ∈

====  , 1,2, ,= ⋅⋅⋅ hi N , 1,2, ,= ⋅ ⋅ ⋅h H ,                          (6) 

which are called the first-order inclusion probabilities.  
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Also, the probability that both of the units i  and j  in the stratum h  will be 

included in a sample, denoted π hij , is obtained by  

, ,

( )π hij
i j s s S

P s
∈ ∈∈ ∈∈ ∈∈ ∈

====  , 1,2, ,≠ = ⋅⋅ ⋅ hi j N , 1,2, ,= ⋅⋅ ⋅h H .                   (7) 

These are termed the joint probabilities or the second-order inclusion 

probabilities. 

As an estimator of the population total Y , consider the H-T  estimator  

                                           ˆ
π

hnH
hi

HT
h i hi

y
Y

1 1= == == == =

====  ,                                                    (8) 

where π hi h hin p==== , hi hi hp x X==== , 
1=

=
hN

h hi
i

X x , and 0 1π< <hi .  

This estimator is an unbiased estimator of Y , with variance: 

                         (((( )))) (((( ))))ˆ π π π
π π

h hN NH
hjhi

HT hi hj hij
h i j i hi hj

yy
Var Y

2

1 1= = >= = >= = >= = >

    
= − −= − −= − −= − −        

    
 .                        (9) 

Rao (1968) considered the following super-population regression model 

without the intercept: 

β ε= +hi hi hiy x ,                                                (10) 

where ( )ξ β=hi hi hiE y x x , ( ) 2
ξ σ= g

hi hi hiV y x x  and ( ), , 0ξ =hi hj hi hjCov y y x x . Here 

ξE , ξV  and ξCov  denote the model expectation, variance and covariance given 

hix ’s respectively over all the finite populations that can be drawn from the 

super-population.β , 2σ  and g  are super-population parameters with 2 0σ >  

and 1 2≤ ≤g . 

Then we have the following expected variance under the model (10): 
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(((( ))))ˆ
ξ σ

π

hNH
g

HT hi
h i hi

E Var Y x2

1 1

1
1

= == == == =

    
= −= −= −= −    

    
 .                               (11) 

To minimize (11) subject to the condition (5), using the Lagrange multiplier 

λ , consider 

σ λ
hNH H

g
hi h

h i hh hi

x n n
n p

2

1 1 1

1
1

= = == = == = == = =

         − + −− + −− + −− + −         
        

     .                            (12)  

Equating (12) to zero and differentiating with respect to hn , we have 

2

1

1 σ
λ =

= 
h gN

hi
h

i hi

x
n

p
.                                               (13) 

Substituting hn  in (5), we have 

2

1 1

1 σ
λ = =

=  
hN gH

hi

h i hi

x
n

p
.                                            (14) 

Replacing 1 λ  in (13) with (14), eventually we have the following model 

allocation in each stratum: 

1

1

1

1 1

−

=

−

= =

=


 

h

h

N
g

h hi
i

h NH
g

h hi
h i

X x

n n

X x

.                                             (15) 

With the assumption ( ) ( )ξ =hi hi hiV y x v x , where ( )v ⋅  is a given function, Rao 

(1977) obtained a form different from (15). Note that if 2=g , (15) reduces to: 

1=

=


h
h H

h
h

X
n n

X
,                                                     (16) 

which is called x-proportional allocation to the stratum. 
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Looking at the expected variance in (11) and the model allocation in (15), it 

does not involve the joint probabilities π hij  in each stratum. It indicates that 

under the model without the intercept (10) the specific sampling design 

properties of a given π PS sampling method that determine the π hij  are not 

reflected in the sample allocation, resulting in the same sample allocation for 

any π PS  sampling. Hence the following issues, as mentioned in the 

Introduction, are of interest: 

 
(a) The super-population regression model which one may wish to employ in 

many surveys will be:      

                                           α β ε= + +hi hi hiy x ,                                             (17) 

 which is a general form and (10) is a special form of (17) when 0α = . 

Considering the intercept term α , we need to reexamine the most appropriate 

sample allocation strategy for stratified π PS sampling. 

(b) It will be shown in the following section that using (17) gives a sample 

allocation involving the joint probabilities π hij  depending on the chosen π PS 

sampling. If we focus on Sampford’s (1967) method for π PS sampling, what 

sample allocation strategy would be appropriate? 

 
Section 3 will address these issues of sample allocation. 

 

3. Alternative sample allocations under stratified π PS sampling 
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As mentioned above, Neyman allocation (1) is the true optimal allocation for 

SSRS. Since Rao (1968) and Rao (1977) did not deal with what the true 

optimal allocation is for stratified π PS sampling, we describe it first. 

 
3.1. True optimal allocation   

 
Assume that the values of hiy  are known. Instead of (9) we consider the 

following form of the variance of the H-T estimator 

(((( ))))ˆ π
π π π

h h h h h hN N N N N NH H H H
hijhi

HT hi hi hj hi hj
h i h i h i j i h i j ihi hi hj

y
Var Y y y y y y

2
2

1 1 1 1 1 1 1 1

2 2
= = = = = = > = = >= = = = = = > = = >= = = = = = > = = >= = = = = = > = = >

= − + −= − + −= − + −= − + −                 (18)                                          

Since the second and fourth terms in (18) are independent of hn , the 

minimization of the variance of the H-T estimator in terms of hn  reduces to the 

minimization of 

                           
πh h hN N NH H

hijhi
hi hj

h i h i j ih hi h hi hj

y
y y

n p n p p

2

2
1 1 1 1

1 1
2

= = = = >= = = = >= = = = >= = = = >

++++             .                           (19) 

Unfortunately, with the Lagrange’s multiplier method or other simple 

methods, one cannot derive an allocation formula with respect to hn  for 

minimizing (19) under the condition (5), due to hn 2−−−−  of the second term in (19). 

Moreover, the joint probabilities π hij  of the second term in (19) should be 

evaluated according to the chosen π PS sampling method.   

We focus on Sampford’s (1967) method. Under this method hn  units are 

selected with replacement in each stratum. The first unit in stratum h  is 

selected with probability hip  and all subsequent units with probabilities 



11 
 

1

/
hN

hi hi

i

λ λ
=
 , where /( )λhi hi h hip n p1= −= −= −= − . Any sample that does not contain hn  

distinct units is rejected. It is noted that π hi h hin p====  for his method. 

Because the exact calculation of all π hij  for his method is complicated and 

computationally prohibitive, the following approximate expression correct to 

4( )−
hO N  under the assumptions that (i) hn  is small relative to hN  and  (ii) hip  is 

of 1( )−
hO N  is useful: 

                         2

1

( 1) [1 {( ) }π
=

= − + + −
hN

hij h h hi hj hi hj hk
k

n n p p p p p  

2 2 3

1

{2( ) 2 ( 2)
=

+ + − − −
hN

hi hj hk h hi hj
k

p p p n p p                               (20) 

                                     2 2 2

1 1

( 3)( ) ( 3)( ) }]
= =

+ − + − − 
h hN N

h hi hj hk h hk
k k

n p p p n p . 

This approximation was derived by Asok & Sukhatme (1976) based on an 

asymptotic theory. 

When substituting (20) for π hij  in (19), we have 

( )π π
h h hN N NH H

hi
h hij hij hi hj

h i h i j ih hi h

y
n y y

n p n

2

1 2
1 1 1 1

1 1
2 1

= = = = >= = = = >= = = = >= = = = >

    
+ − ++ − ++ − ++ − +    

    
         ,                     (21) 

where  

                  2 2 2
1

1 1

( ) ( )π
= =

= + − − 
h hN N

hij hi hj hk hi hj hk
k k

p p p p p p                                    (22) 

and 

                           2
2

1

1 {( ) }π
=

= + + −
hN

hij hi hj hk
k

p p p 2 2 3

1

2( ) 2
=

+ + − 
hN

hi hj hk
k

p p p      
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                                         2 2 2

1 1

2 3( ) 3( )
= =

+ − + + 
h hN N

hi hj hi hj hk hk
k k

p p p p p p                       

(23) 

From (21), we can derive the form (24) in terms of hn , which is the 

objective function of the optimization problem (or nonlinear programming 

problem): 

 
             Minimize  

                π π
h h h h hN N N N NH H H

hi
h hij hi hj hij hi hj

h i h i j i h i j ih hi h

y
n y y y y

n p n

2

1 2
1 1 1 1 1 1

1 1
2 2

= = = = > = = >= = = = > = = >= = = = > = = >= = = = > = = >

+ −+ −+ −+ −                                 (24) 

subject to 
1=

=
H

h
h

n n in (5). 

 

The solution hn , 1,2, ,= ⋅⋅ ⋅h H , to this optimization problem will be the true 

optimal allocation for minimizing the variance of the H-T estimator under 

Sampford’s method for stratified sampling.  

 

3.2. Model allocations   

 
Because the values of hiy  are often unknown, the optimization problem defined 

above may not be applied in practice. Instead we assume two different super-

population regression models involving an intercept term: 

 
                Model I: 

α β ε= + +hi hi hiy x ,  1,2, ,= ⋅⋅ ⋅h H , 1, ,= ⋅⋅ ⋅ hi N ,                          (25) 

where εhi  is numerically negligible, that is, x  perfectly explains y . 
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               Model II: 

α β ε= + +hi hi hiy x ,  1,2, ,= ⋅⋅ ⋅h H , 1,2, ,= ⋅⋅⋅ hi N                         (26) 

where ( )ξ α β= +hi hi hiE y x x , ( ) 2
ξ σ= g

hi hi hiV y x x ,  and ( ), , 0ξ =hi hj hi hjCov y y x x . 

 
Model I was used by Des Raj (1956). The model (10) is the special case of 

the Model II, where 0α = . Model II was assumed by Reddy (1976), Rao 

(1977) and Dayal (1985) for the sample allocation under SSRS. Assume that 

the values of hix  and the super-population parameters are known for the two 

models.   

 

Theorem 1. Under the Model I, the sample allocation problem for the 

minimization of the expected variance of the H-T estimator under any π PS 

sampling is equivalent to minimizing   

H H
h h

h hh h

A B

n n2
1 1= == == == =

++++      ,                                                 (27) 

where 

2
2

1

( )
2

α αβ
π

= >

+ +
= 

h hN N
hi hj

h h hij
i j i hi hj

x x
A X

x x
                                  (28) 

and 

2
2

1

( )α β β
=

 += − 
 


hN
hi

h h h
i hi

x
B X X

x
.                                        (29) 

 



14 
 

Proof.  Consider the four terms in the right-hand side of expression (18) for the 

variance of the H-T estimator. The expected variance (((( ))))ˆ
ξ HTE Var Y  under the 

Model I  is the sum of the expected values for those four terms. The expected 

values for the second and fourth terms in (18) are known values that do not 

involve hn , and those for the other terms in (18) do depend on hn  and are 

given by: 

 
( )( ) α αβα β π β β

h h hN N NH H H H
hi hjh hi h h

hij h
h i h i j i h hh hi h hi hj h

x xX x X X
X

n x n x x n

22 2 2
2 2 2

2
1 1 1 1 1 1

2
= = = = > = == = = = > = == = = = > = == = = = > = =

 + ++ ++ ++ + ++++ + + −+ + −+ + −+ + − 
 

                     , 

 (30) 

which is derived from the fact that ( ) /π
h hN N

hij h h
i j i

n n
1

1 2
= >= >= >= >

= −= −= −= − . 

Since β
H

h
h

X2 2

1====
  is also known, the quantity to be minimized in (30) is: 

  
( )( ) α αβα β π β

h h hN N NH H H
hi hjh hi h h

hij
h i h i j i hh hi h hi hj h

x xX x X X

n x n x x n

22 2 2
2

2
1 1 1 1 1

2
= = = = > == = = = > == = = = > == = = = > =

    + ++ ++ ++ +    ++++ + −+ −+ −+ −        
             

                     (31) 

The proof follows from substitution of (28) and (29) in (31). 

 
Remark 1.  The minimization of the expected variance in terms of hn  under 

the Model I with the intercept term reduces to minimization of the function 

(27), which involves the joint probabilities π hij  in each stratum that in turn 

depend on the chosen π PS sampling method.   
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Remark 2.  The minimization of (27) in terms of hn  under the condition (5) is 

a simple optimization problem because the hA  in (28) and the hB  in (29) are 

known values. 

 
From (20) and (27) we obtain the following theorem. 

 
Theorem 2. Under the Model I, the sample allocation problem to minimize the 

expected variance of the H-T estimator under Sampford’s method when using 

the joint probabilities, correct to 4( )−
hO N  given in (20) is equivalent to 

minimizing 

1 1= =

+ 
H H

h
h h

h h h

D
C n

n
,                                                (32) 

where  

{ }2
1

1

2 ( )α αβ π
= >

= + +
h hN N

h hi hj hij
i j i

C x x                                  (33) 

and 

                              { }2
2

1

2 ( )α αβ π
= >

= − + +
h hN N

h h hi hj hij
i j i

D B x x .                         (34) 

                

Proof.  Substituting π hij  from (20) in (28) for the first term of (27), we have  

                  {{{{ }}}}( ) ( )α αβ π π
h hN NH H

h
hi hj h hij hij

h h i j ih h

A
x x n

n n
2

1 22
1 1 1

1
2 1

= = = >= = = >= = = >= = = >

    
= − + + += − + + += − + + += − + + +    

    
          

                            {{{{ }}}}( )α αβ π
h hN NH

h hi hj hij
h i j i

n x x2
1

1 1

2
= = >= = >= = >= = >

= + += + += + += + +  

                                        {{{{ }}}}( )α αβ π
h hN NH

hi hj hij
h i j i

x x2
2

1 1

2
= = >= = >= = >= = >

+ + ++ + ++ + ++ + +  
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 (35) 

                                             {{{{ }}}}( )α αβ π
h hN NH

hi hj hij
h i j i

x x2
1

1 1

2
= = >= = >= = >= = >

− + +− + +− + +− + +  

                                                  {{{{ }}}}( )α αβ π
h hN NH

hi hj hij
h i j i h

x x
n

2
2

1 1

1
2

= = >= = >= = >= = >
− + +− + +− + +− + + . 

 
Since the second and third terms in (35) are the known values, the 

minimization of (35) reduces to minimizing:  

   {{{{ }}}} {{{{ }}}}( ) ( )α αβ π α αβ π
h h h hN N N NH H

h hi hj hij hi hj hij
h i j i h i j ih

n x x x x
n

2 2
1 2

1 1 1 1

1
2 2

= = > = = >= = > = = >= = > = = >= = > = = >
+ + − + ++ + − + ++ + − + ++ + − + +             . (36) 

Adding 
H

h

h h

B

n1====
  in (27) to (36), we have the following minimization problem 

corresponding to the minimization of (27): 

                             {{{{ }}}}( )α αβ π
h hN NH

h hi hj hij
h i j i

n x x2
1

1 1

2
= = >= = >= = >= = >

+ ++ ++ ++ +      

 (37)                

                               {{{{ }}}}( )α αβ π
h hN NH

h hi hj hij
h i j ih

B x x
n

2
2

1 1

1
2

= = >= = >= = >= = >

    
+ − + ++ − + ++ − + ++ − + +    

    
     . 

This completes the proof. 

 
Remark 3.  The minimization of (32) under (5) is a simple allocation problem 

in terms of hn  because the hC  in (33) and the hD  in (34) are the known values. 

 
Remark 4.  We can define the following optimization problem with respect to 

hn : 

                                       Minimize 

1 1= =
+ 

H H
h

h h
h h h

D
C n

n
                                                (38) 
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subject to 
1=

=
H

h
h

n n in (5). 

In addition to (5), the following conditions can be added: 

 

≤h hn N , 1,2, ,= ⋅ ⋅ ⋅h H                                            (39) 

and  

                                         2≥hn , 1,2, ,= ⋅⋅ ⋅h H .                                            (40) 

 

Also, other possible conditions will be:  

                                 1<h hin p , 1,2, ,= ⋅ ⋅ ⋅ hi N , 1,2, ,= ⋅⋅ ⋅h H .                            (41) 

 

The optimization problem in Remark 4 may be easily handled by convex 

mathematical programming algorithms and the solution to the problem would 

provide an efficient sample allocation strategy under the Model I when using 

Sampford’s sampling procedure.  

We obtain the following theorems regarding the minimization of the 

variance of the H-T estimator in π PS sampling under the assumption of Model 

II , which is more practical than Model I.  

 

Theorem 3. Under Model II, the sample allocation problem for minimizing the 

expected variance of the H-T estimator under any π PS sampling amounts to 

minimizing:   

                                            
* *H H
h h

h hh h

A B

n n= == == == =

++++    2
1 1

 ,                                                    (42) 
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where 

                            ( )( )* 2 1 1 1

1

2α α β π− − −

= >

= − +
h hN N

h h hj hi hi hij
i j i

A X x x x                             (43) 

and 

                       * 2 1

1

σ −

=
= 

hN
g

h h hi
i

B X x .                                              (44) 

 

Proof.  Consider a different form of (9) using π =hi h hin p : 

                       �(((( )))) πh hN NH
hij hjhi

HT hi hj
h i j i h hi hj

yy
Var Y p p

n p p= = >= = >= = >= = >

        
= − −= − −= − −= − −             

         


2

2
1 1

.                     (45) 

By using   

                             2 2 2 2 2 2ξ σ α β αβ= + + +g
hi hi hi hiE y x x x                                       (46) 

and  

                           2 2( ) ( )ξ α αβ β= + + +hi hj hi hj hi hjE y y x x x x ,                              (47) 

 

 we obtain  

(((( ))))ξ σ α α βhj hj hig ghi
h hi h hi

hi hj hi hj

y x xy
E X p X x

p p x x
− −− −− −− −

     −−−−
− = + +− = + +− = + +− = + +        

    

2

2 2 2 12 2 .                 (48) 

Then we get: 

         �(((( ))))ξ HTE Var Y ==== (((( ))))ξ

π
α α β∆

h hN NH
hij hj hi

h hi hj hi
h i j i h hi hj

x x
X p p x

n x x
−−−−

= = >= = >= = >= = >

    −−−−    
+ − ++ − ++ − ++ − +            

        
    2 1

2
1 1

2                     

                              (((( )))) (((( ))))ξ α α β∆
h hN NH

hj hi hi
h i j i

x x x−−−−

= = >= = >= = >= = >

    
= + − += + − += + − += + − +    

    
     1

1 1

2    

 (49) 
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                                              (((( )))) (((( ))))α α β π
h hN NH

h
hj hi hi hij

h i j ih

X
x x x

n
− − −− − −− − −− − −

= = >= = >= = >= = >

+ − ++ − ++ − ++ − +    
2

1 1 1
2

1 1

2 , 

where                      

                                ξ
π

σ∆
h hN NH

hijg g
h hi hi hj

h i j i h

X p p p
n

−−−−

= = >= = >= = >= = >

    
= −= −= −= −    

    
    2 2

2
1 1

2  

                                     ( )σ
hN gH

gh
h hi hi

h i h

X
n p p

n
−−−−

= == == == =
= −= −= −= −2 1

1 1

1  

                        σ
hNH

g
hi

h i h hi

x
n p= == == == =

    
= −= −= −= −    

    
2

1 1

1
1  

σ σ
h hN NH H

g gh
hi hi

h i h ih

X
x x

n
−−−−

= = = == = = == = = == = = =
= −= −= −= −        2 1 2

1 1 1 1

.                                    (50) 

 

Since the second term in (49) and the second term in (50) are independent of 

hn , the minimization of the expected variance of (45) reduces to minimizing: 

            (((( )))) (((( ))))α α β π σ
h h hN N NH H

gh h
hj hi hi hij hi

h i j i h ih h

X X
x x x x

n n
− − − −− − − −− − − −− − − −

= = > = == = > = == = > = == = > = =

− + +− + +− + +− + +            
2

1 1 1 2 1
2

1 1 1 1

2  .               (51)  

Since (51) equals (42), the proof is completed. 

 

 

Remark 5. Under Model II with the intercept term the minimization of the 

expected variance in terms of hn  amounts to the minimization of the function 

(42) involving the joint probabilities, which differ according to the chosen 

π PS sampling method.   
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Remark 6. Since the *
hA  in (43) and the *

hB  in (44) are the known values, 

minimizing (42) in terms of hn  subject to the condition (5) is a simple 

optimization problem. 

 

Remark 7. ξ∆  in (50) is an alternative form to (11), which is the expected 

variance of the H-T estimator under the model (10) without the intercept term. 

Hence the expected variance of the H-T estimator under Model II with the 

intercept term consists of (11) plus the additional terms, as shown in (49). 

 

Corollary 1. Under the Model II with 0α = , the sample allocation problem for 

minimizing the expected variance of the H-T estimator under any π PS 

sampling is equivalent to minimizing:   

hNH
gh
hi

h ih

X
x

n
−−−−

= == == == =
     1

1 1

.                                                (52) 

 

Proof.  When 0α = , (49) in Theorem 3  reduces to simply ξ∆ , which is 

expressed as (50). The second term in (50) does not depend on hn , and the 

minimization of (50) reduces to the one of (52).  Hence, we have the corollary. 

 

Remark 8. (52) does not depend on the joint probabilities. 

 

Remark 9. It is interesting to note that when solving for hn  by using the 

Lagrange multiplier λ  to minimize (52) subject to the condition (5), it gives 
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(15), which is the sample allocation under the model (10). This is because the 

model (10) is  Model II  with 0α = .   

 

Theorem 4. Under Model II, the sample allocation problem for Sampford’s 

sampling method in minimizing the expected variance of the H-T estimator, 

when using the joint probabilities (20) correct to 4( )−
hO N , is equivalent to 

minimizing: 

                                       
*

*

1 1= =

+ 
H H

h
h h

h h h

D
C n

n
,                                               (53) 

where  

             ( ){ ( ) }* 1
1

1

2α α β π−

= >

= − +
h hN N

h hi hj hi hij
i j i

C x x x ,                                (54) 

and  

                    (((( )))){{{{ (((( )))) }}}}* * α α β π
h hN N

h h hi hj hi hij
i j i

D B x x x−−−−

= >= >= >= >
= − − += − − += − − += − − + 1

2
1

2 .                       (55) 

 
Proof.  Substituting (20) in the first term of (42) and using (22) and (23), we 

obtain   

 

    (((( )))){{{{ (((( )))) (((( ))))}}}}
*

( )α α β π π
h hN NH H

h h
h h hj hi hi hi hj h hij hij

h h i j ih h

A X
n n x x x p p n

n n
− − −− − −− − −− − −

= = = >= = = >= = = >= = = >
= − − + += − − + += − − + += − − + +        

2
1 1 1

1 22 2
1 1 1

2 1  

              (((( )))){{{{ (((( )))) (((( ))))}}}}α α β π π
h hN NH

hi hj hi h hij hij
h i j ih

x x x n
n

−−−−

= = >= = >= = >= = >

    
= − − + += − − + += − − + += − − + +    

    
     1

1 2
1 1

1
2 1  

          (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

h hi hj hi hij
h i j i

n x x x−−−−

= = >= = >= = >= = >

= − += − += − += − +     1
1

1 1

2  

                  (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

hi hj hi hij
h i j i

x x x−−−−

= = >= = >= = >= = >
+ − ++ − ++ − ++ − + 1

2
1 1

2  

 (56) 
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                          (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

hi hj hi hij
h i j i

x x x−−−−

= = >= = >= = >= = >
− − +− − +− − +− − + 1

1
1 1

2  

                                 (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

hi hj hi hij
h i j ih

x x x
n

−−−−

= = >= = >= = >= = >
− − +− − +− − +− − +     1

2
1 1

1
2 .      

 

Since the second and third terms in (56) are independent of hn , the 

minimization of (56) reduces to minimizing the other terms: 

 

                          (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

h hi hj hi hij
h i j i

n x x x−−−−

= = >= = >= = >= = >

− +− +− +− +     1
1

1 1

2  

(57) 

                                (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

hi hj hi hij
h i j ih

x x x
n

−−−−

= = >= = >= = >= = >
− − +− − +− − +− − +     1

2
1 1

1
2 . 

 
Thus, the minimization of (42) with (43) and (44) amounts to minimizing 

 

                        (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

h hi hj hi hij
h i j i

n x x x−−−−

= = >= = >= = >= = >
− +− +− +− +     1

1
1 1

2  

              (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

hi hj hi hij
h i j ih

x x x
n

−−−−

= = >= = >= = >= = >

− − +− − +− − +− − +     1
2

1 1

1
2                             (58) 

                       
*H
h

h h

B

n====
++++

1

.  

 
Accordingly, the following reduced form from (58) can be obtained. 

 

                       (((( )))){{{{ (((( )))) }}}}α α β π
h hN NH

h hi hj hi hij
h i j i

n x x x−−−−

= = >= = >= = >= = >
− +− +− +− +     1

1
1 1

2  

(59) 

                           (((( )))){{{{ (((( )))) }}}}* α α β π
h hN NH

h hi hj hi hij
h i j ih

B x x x
n

−−−−

= = >= = >= = >= = >

    
+ − − ++ − − ++ − − ++ − − +    

    
     1

2
1 1

1
2   

 

Hence, we have proved the theorem. 
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Remark 10. Since the *
hC  in (54) and the *

hD  in (55) are the known values,  the 

minimization of (53) subject to (5) is a simple allocation problem in terms of 

hn . 

 
Remark 11. In order to find a solution for hn , we may define the following 

optimization problem: 

 
                                         Minimize  

                                             
*

*

1 1= =

+ 
H H

h
h h

h h h

D
C n

n
                                                 (60) 

subject to 
1=

=
H

h
h

n n in (5).  

The solution to this optimization problem easily solved by convex 

mathematical programming algorithms will provide an optimum sample 

allocation under Model II in using Sampford’s method. As discussed in 

Remark 4, the conditions (39), (40) and (41) can be also used with preferences. 

 

4. Simulations 

 
To examine sample allocation under Sampford’s method, we considered the 

super-population Model II given in Hansen et al. (1983, p. 781): the positive 

auxiliary characteristic X has a gamma distribution with density function 

0.4 exp( /5)−hi hix x and the characteristic Y  under study, conditional on X , has 

a gamma distribution with density function 11/( ( )) exp( / )−Γ −c c
hi hib c y y b where 

3/ 2 11.25 (8 5 )−= +hi hib x x  and 3/ 2 20.04 (8 5 )−= +hi hic x x . Accordingly,  
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                                      ( ) 0.4 0.25ξ = +hi hi hiE y x x                                           (61) 

and  

                                      ( ) 3/ 20.0625ξ =hi hi hiV y x x .                                            (62) 

 
Finite populations with sizes 30, 60, 90, 120, 150, 180, 210, 240, 270, and 

300 were generated from the super-population. The value of the characteristic 

X  is assumed to be known for each unit in each finite population. Each finite 

population was divided into 3 strata and each stratum has the same size (e.g., 

10, 10, and 10 for size 30). We considered two types of stratification: (A) The 

units in the finite population are arranged in increasing order of the value of 

X and the first 1N  are considered as stratum 1 and the second 2N  as stratum 2 

and the remaining3N  as stratum 3; (B) The units in the finite population are 

randomly assigned to each stratum.  

Before selection, the units in each stratum were arranged in increasing order 

of the value of X , so that 1 2≤ ≤ ⋅⋅ ⋅ ≤
hh h hNx x x . The total sample size n for each 

population is 10 percent of each population size, but for the three population 

sizes 30, 60 and 90, 10=n , which is to be allocated so that at least two units 

are to be chosen from each stratum. 

The comparison between the true optimal allocation and the model 

allocation according to the type of stratification is given in the following tables. 

The true optimal allocation is the solution to the optimization problem given 

by the minimization of (24) subject to (5), while the model allocation is the 

solution to that given by the one of (60) under (5) in Remark 11. Those 
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solutions satisfying 1<h hin p  were obtained using ‘nonlinear programming 

(NLP) Procedure’ of SAS/OR running convex mathematical programming 

algorithms. See SAS/OR (2018).    

 

TABLE 1 
 

Comparison of true optimal allocation and model allocation 
for Stratification Type A 

 

N  n  
True Optimal Allocation Model Allocation 

R.E. 
1n  2n  3n  1n  2n  3n  

30 
 

10 
 

2 
(1.64) 

3 
(3.29) 

 5 
(5.07) 

2 
(2.13) 

3 
(3.12) 

5 
(4.75) 

1.0000 
 

60 
 

10 
 

2 
(1.57) 

3 
(3.36) 

 5 
(5.07) 

2 
(2.06) 

3 
(3.05) 

5 
(4.89) 

1.0000 
 

90 
 

10 
 

2 
(1.63) 

3 
(3.19) 

 5 
(5.18) 

2 
(1.85) 

3 
(2.87) 

5 
(5.28) 

1.0000 
 

120 
 

12 
 

2 
(1.97) 

4 
(3.79) 

 6 
(6.24) 

2 
(2.28) 

4 
(3.40) 

6 
(6.32) 

1.0000 
 

150 
 

15 
 

2 
(2.41) 

5 
(4.43) 

 8 
(8.16) 

3 
(2.90) 

4 
(4.26) 

8 
(7.84) 

1.0011 
 

180 
 

18 
 

3 
(2.93) 

5 
(5.20) 

10 
(9.87) 

4 
(3.42) 

5 
(5.16) 

9 
(9.42) 

1.0232 
 

210 
 

21 
 

3 
(3.29) 

6 
(5.71) 

12 
(12.00) 

4 
(3.95) 

6 
(5.97) 

11 
(11.08) 

1.0102 
 

240 
 

24 
 

4 
(3.85) 

7 
(6.83) 

13 
(13.32) 

5 
(4.70) 

7 
(6.91) 

12 
(12.39) 

1.0189 
 

270 
 

27 
 

4 
(4.36) 

8 
(8.05) 

15 
(14.59) 

5 
(5.27) 

8 
(7.76) 

14 
(13.97) 

1.0026 
 

300 
 

30 
 

5 
(4.98) 

9 
(9.01) 

16 
(16.01) 

6 
(5.94) 

9 
(8.60) 

15 
(15.46) 

1.0092 
 

         Note: Figures in parentheses are unrounded values and R.E. is the relative efficiency 
calculated as the variance (9) for model allocation divided by that for true optimal 
allocation. 

 

 

Table 1 for stratification type A shows that for the first four populations, the 

true optimal allocation and model allocation coincide, and for the other 

populations, the two allocations are very similar, resulting in the relative 
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efficiency (R.E.), defined as the variance of the H-T estimator for model 

allocation over that for true optimal allocation, being equal to 1 or very close to 

1. Table 2 shows that for stratification type B the model allocation for the first 

two populations is slightly different from the true optimal allocation, and for 

the others the two allocations are equal. Accordingly, it shows that the model 

allocation is a good alternative to the true optimal allocation. 

 
 

TABLE 2 
 

Comparison of true optimal allocation and model allocation 
for Stratification Type B 

 

N  n 
True Optimal Allocation Model Allocation 

R.E. 
  1n   2n  3n  1n  2n  3n  

30 
 

10 
 

3 
(2.52) 

 4 
(4.11) 

3 
(3.37) 

3 
(2.82) 

 3 
(3.51) 

 4 
(3.67) 

1.1082 
 

60 
 

10 
 

3 
(3.50) 

 3 
(2.97) 

4 
(3.53) 

3 
(3.27) 

 4 
(3.50) 

 3 
(3.23) 

1.0386 
 

90 
 

10 
 

3 
(3.13) 

 3 
(3.24) 

4 
(3.63) 

3 
(3.26) 

 3 
(3.16) 

 4 
(3.58) 

1.0000 
 

120 
 

12 
 

4 
(4.15) 

 4 
(3.56) 

4 
(4.29) 

4 
(4.18) 

 4 
(3.86) 

 4 
(3.96) 

1.0000 
 

150 
 

15 
 

5 
(5.16) 

 5 
(4.48) 

5 
(5.36) 

5 
(5.23) 

 5 
(4.81) 

 5 
(4.96) 

1.0000 
 

180 
 

18 
 

6 
(5.59) 

 6 
(5.99) 

    6 
(6.42) 

6 
(5.96) 

 6 
(5.99) 

 6 
(6.05) 

1.0000 
 

210 
 

21 
 

7 
(7.26) 

 7 
(6.67) 

7 
(7.07) 

7 
(6.84) 

 7 
(7.29) 

 7 
(6.87) 

1.0000 
 

240 
 

24 
 

8 
(7.57) 

 8 
(8.02) 

8 
(8.41) 

8 
(8.29) 

 8 
(7.70) 

 8 
(8.01) 

1.0000 
 

270 
 

27 
 

9 
(8.42) 

 9 
(9.37) 

9 
(9.21) 

9 
(9.11) 

 9 
(8.96) 

 9 
(8.93) 

1.0000 
 

300 
 

30 
 

10 
(9.65) 

10 
(10.08) 

10 
(10.27) 

10 
(10.45) 

10 
(9.68) 

10 
(9.87) 

1.0000 
 

      Note: See Table 1 
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5. Concluding remarks 

 
 We have addressed the topic of efficient sample allocation in stratified 

samples using more general super-population regression models than those 

investigated by Rao (1968). Under more general models that include an 

intercept term, we have developed several theorems that are useful for deciding 

sample allocation in π PS sampling designs. Also, through the theorems we 

have shown how to apply this sample allocation theory for Sampford’s (1967) 

sampling method, one of the more common π PS sampling designs used in 

survey practice. 

Based on the theorems developed in this paper, the optimization problem 

with respect to the stratum sample sizes can be solved by using software 

involving convex mathematical programming algorithms. This is a 

straightforward approach for sample allocation when using more efficient π PS 

sampling methods. 

Also, although we assumed that the super-population parameters are known 

for the two models, they can be estimated in practice. Including Harvey (1976), 

Godfrey et al. (1984), and Särndal & Wright (1984), there would be many 

useful references for estimation of model parameters.  

In addition to Sampford’ sampling, the approach can be applied to a variety 

of π PS  sampling without replacement designs. In future work, it will be 

important to extend the theory and methods described here to allocation 

problems under more complicated super-population models and situations 

where the super-population model can vary across strata. The approach may 
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also be useful in implementing more sophisticated survey designs such as 

responsive designs, suggested by Groves and Heeringa (2006), to achieve 

higher quality statistics.   
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