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 Classification of Procedures for Sampling Without Replacement  

 
  
• The classification by manner of selection (Brewer and Hanif (1983)):   
 

ü Draw-by-Draw Procedures (DDP) 

ü Whole Sample Procedures  (WSP) 

                   Systematic Procedures 

                   Rejection Procedures 

                  Other Selection Procedures 

 
 
• This study gives attention to the comparison between traditional DDP (TDDP) 

and optimized WSP (OWSP). 
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 TDDP (Traditional DDP)  
      

    
• Probabilities of selection are defined for each draw and always depend on the 

units already selected, since the selection is without replacement. 
 
• A number of selection procedures have been developed. Several can be easily 

run in software such as SAS or SPSS. 
 
• It seems that some of inclusion probabilities proportional to size ( PSπ ) 

sampling methods have been especially attractive to survey samplers. 
 
• Many books regarding survey sampling basically refer to PSπ  sampling 

methods of Mizuno (1952) and Brewer (1963). 
 

• Rao and Bayless (1969) and Bayless and Rao (1970) present the superiority of  
Murthy (1957)’s method , which is not a PSπ sampling method, to some chosen 
methods. 
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 OWSP (Optimized WSP)  
      

  
• “Optimized” indicates “variance minimization.” One of the oldest methods for 

variance minimization is that of Raj (1956), which is a PSπ sampling method, 
followed by the one of Jessen (1969).  

 
• The units are not drawn individually and the selection probability for each 

possible sample of n  distinct units is specified. Accordingly, one selection 
using these probabilities selects the whole sample. 

 
• Kim, Heeringa, and Solenberger (2006) developed a theory of model-based  

PSπ  sampling methods for minimizing the model expectation of the variance 
of the Horvitz and Thompson (H-T) (1952) estimator under superpopulation 
models. 

 
• The applications on the theory are presented below. 
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 The Elements of the Comparison of TDDP and OWSP  
      
 

• We compare the sample selection probabilities and the efficiencies of the 
following methods: 

 
TDDP: Mizuno (1952), Brewer (1963), and Murthy (1957) 

OWSP: Kim, Heeringa, and Solenberger (2006) 
 

• The comparison focuses on only the case of sample size 2n =  (or stratified 
designs with 2 selections per stratum), which requires a simple sampling 
procedure and is the most important case in the selection of the primary 
sampling units (PSUs) in practical multi-stage designs.  

 
• For PSπ sampling to select small samples, we would prefer the H-T (1952) 

estimator or other unbiased estimators to the generalized regression (GREG) 
estimator, due to the bias. 

 
• For Murthy (1957)’s method, Murthy’s estimator, which is an unbiased 

estimator, can be used.  
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 The Structures of Sample Selection Probabilities   
      
 

(Notation) 
 

i ip x X= : the relative size of the unit, where iX x= ∑  and ix  is an 
auxiliary variable correlated with the variable of the interest, iy . 

 
( )p s : the selection probability of a sample s  

 
( )i

i s

p sπ
∈

= ∑ : the first-order inclusion probabilities    

 

,

( )ij
i j s

p sπ
∈

= ∑ : the second-order inclusion probabilities, often called the 

joint probabilities 
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n Mizuno (1952)’s Method 
 
 
l Selection Procedure: 

 
(1) Select a unit with unequal probabilities, ip . 

  
              (2) Select the remaining 1n −  units according to a simple random sampling 

without replacement. 
         
 

l Sample Selection Probabilities for 2n = : 
 

                    
1 1

( )
1 1ij i jp s p p

N N
π= = +

− −
 

                                      
1

( , )
( 1) i jf x x

X N
=

−
, where ( , )i j i jf x x x x= +  
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It can be re-expressed as 

 

                     ( ) i
i s

p s a b x
∈

= + ∑ , where 0a =  and 
1

( 1)
b

X N
=

−
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n Brewer (1963)’s Method 
 
          This method is for the cases where the sample size is just two. 
 
l Selection Procedure: 

 

(1) Draw the first unit with probabilities 
(1 )

1 2
i i

i

p p
p

−
−

. 

(2) Draw the second unit with probabilities 
1

i

j

p
p−

, where j  is the unit 

drawn first. 
 
 
l Sample Selection Probabilities for 2n = : 

     

        
1 1 1

( )
2 2ij i j

i j

p s x x
DX X x X x

π
 

= = +  − − 
, where 

1

1
1

2 2

N
i

i i

x
D

X x=

 
= + − 

∑  
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Note that the selection probabilities are the form of 

 

                         
1

( ) ( , )ij i jp s g x x
DX

π= = , 

       where  
1

1
1

2 2

N
i

i i

x
D

X x=

 
= + − 

∑  and 
1 1

( , )
2 2i j i j

i j

g x x x x
X x X x

 
= +  − − 
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n Murthy’s method 
 
 
l Selection Method: 
 

     The successive units are drawn with probabilitie s ip , 
1

j

i

p

p−
, 

1
k

i j

p
p p− −

, 

and so on. 
 
 
l Sample Selection Probabilities for 2n = : 
 

          
1

( ) ( , )i jp s h x x
X

= , where 
1 1

( , )i j i j
i j

h x x x x
X x X x

 
= +  − − 

  

          which is similar to that for Brewer’s method           
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n Methods of Kim, Heeringa, and Solenberger (2006) 
 
 
l Basic Concepts: 

 
Assume that the finite population is a random sample drawn from a larger 
population called a superpopulation with the distribution ξ   

 
If we know or can estimate the superpopulation model at the design stage, it 
may be useful for selecting samples and give increased precision 

 
 

l Sample Selection Probabilities for 2n = ( or nh=2 for strata h=1,… ,H): 
 
        The probabilities depend on the optimization problems for minimizing the 

model expectations of the variance of the H-T estimator under a given 
superpopulation model. Accordingly, 

 
                 ( )p s , which is equal to ijπ , is an unknown function of ix  and jx  
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l Superpopulation Model 
 
 

                      i i iy xα β ε= + + ,  

where ( ) 0iEξ ε = ,  2( ) ( 0)i iV xγ
ξ ε σ γ= ≥ , and ( ) 0i jEξ ε ε =  

 
        Here Eξ  denotes the model expectation over all the finite populations that can      
        be drawn from the superpopulation. 
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l Model Expectations (ME) of the Variance of the H-T estimator 
 
 

(1) Under a form of the variance of the H-T estimator 
 

                     ( )ˆ
I HTVar Y =

( )N N N N N
iji i

i j i j
i i j i i j ii i j

y
y y y y

ππ
π π π

2

1 1 1

1
2 2

= = > = >

−
+ −∑ ∑∑ ∑∑ , 

 
              the ME is given by  
 

µ( )( )HTIE Var Yξ

( )
( )

N N
i j

ij
i j i i j

x xX
n

n n x x
α βα π β

2
2

1

2
1

= >

 + +
= + − 

  
∑∑  

                                                                                                      ( )( )2 2 2 2

1

/ 1 2
N

i i i i
i

X nx x x xγσ α β αβ
=

+ − + + +∑  

                                                                                                              ( )2 22 ( )
N N

i j i j
i j i

x x x xα αβ β
>

− + + +∑∑  
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(2) With regard to a different form of the variance of the H-T estimator 
 

µ( ) ( )
N N

ji
HTII i j ij

i j i i j

yy
Var Y π π π

π π

2

1= >

 
= − −  

 
∑∑ , 

 
             the ME is given by  
 

µ( )( )HTIIE Var Yξ  ( )
N

i i
i

X
np p

n

γ
γσ 2

1

1

1 −

=

= −∑  

( ) ( )
N N

j i i
i j i

x x xα α β1

1

2 −

= >

 
+ − + 

 
∑∑  

   ( ) ( )
N N

j i i ij
i j i

X
x x x

n
α α β π

2
1 1 1

2
1

2 − − −

= >

+ − +∑∑ , 
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l Optimization Problems (OP) for Minimizing Model Expectations 
 

               OP I:    

Minimize   
( )

( )
N N

i j

i j i i j

x x
p s

x x

α β

1= >

+ +
∑∑   

 
              OP II:    

Minimize    ( ) ( ) ( )
N N

j i i
i j i

x x x p sα β1 1 1

1

− − −

= >

− +∑∑  

 
 
                  subject to ( )i

i s

p sπ
∈

= ∑ ,  1, ,i N= ⋅ ⋅ ⋅  

 
( )i j i jc p sπ π π π≤ ≤ , where c  is a real number between 0 and 1 
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     Note that both optimization problems depend only on α  and β , regardless of 
the values of 2σ  or γ  in the superpopulation model.   
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 Estimation of the Superpopulation model  
 
 

   As noted by Godfrey, Roshwalb and Wright (1984) and Särndal and Wright (1984), 
 the Harvey (1976) algorithm may be used to calculate the maximum likelihood 

estimates of α , β , 2σ , and γ  in the superpopulation model.   
 

   Harvey’s algorithm is useful for the models in which the variance of the 
disturbance term is proportional to the auxiliary variable raised to a certain power, 
which is written by  

 
2 2
i ixγσ σ=  

 
  In his algorithm the starting values of α  and β  are the ordinary least squares 
(OLS) estimates and in each iteration the values of α  and β  depend on 2σ  and γ  , 
or the reverse. 
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  Empirical Results  
  
n Description and Scatter Plots of Populations 
 

5 Natural Populations used by Rao and Bayless (1969) 
 

No Source y  x  N  

(1) Kish (1965) No. of rented 
dwelling units 

Total no. of 
dwelling units 

10 

(2) Kish (1965) No. of rented 
dwelling units 

Total no. of 
dwelling units 

10 

(3) Rao (1963) Corn acreage in 
1960 

Corn acreage in 
1958 

14 

(4) Hanurav (1967) Population in 1967 Population in 1957 20 

(5) Horvitz and 
Thompson (1952) No. of  Households Eye-estimated no. 

of Households 20 
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(1) Kish (1965) 
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(2) Kish (1965) 
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(3) Rao (1963) 
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(4) Hanurav (1967) 
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(5) Horvitz and Thompson (1952) 
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n Maximum Likelihood Estimates by Harvey (1976)’s algorithm 
 
 

Pop Iterations α  β  2σ  γ  

(1) 41 -0.5256 0.5058 0.0203 2.2964 

(2) 13 -0.8130 0.5951 0.1322 1.4108 

(3) 11 25.9264 1.0272 0.1989 1.6099 

(4) 38 185718.57 1015.3631 0.5370 3.2817 

(5) 14 1.1426 1.0381 0.0038 2.7461 
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n The Comparison of the Efficiencies 
 
(1) Kish (1965)                                

                          10N =  
 

Method µ( )Var Y  
Mizuno 2908.04 
Brewer 621.98 
Murthy 597.57 
0.1 794.56 
0.2 792.68 
0.3 621.05    
0.4 659.77 

c 

0.5 

OP I 

NA 
0.1 777.96 
0.2 724.61 
0.3 661.91 
0.4 693.59 

c 

0.5 

OP II 

  NA 
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(2) Kish (1965)                                                       
   10N =  

 
Method µ( )Var Y  

Mizuno 2183.23 
Brewer 567.77 
Murthy 480.07 
0.1 519.94 
0.2 538.56 
0.3   NA 
0.4 NA 

c 

0.5 

OP I 

NA 
0.1 611.75 
0.2 602.16 
0.3   NA 
0.4 NA 

c 

0.5 

OP II 

NA 
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(3) Rao (1963)                                                           
  14N =  

 
Method µ( )Var Y  

Mizuno 53353.35 
Brewer 37211.20 
Murthy 36771.14 
0.1 37536.48 
0.2 32021.02 
0.3 38638.66 
0.4 37588.08 

c 

0.5 

OP I 

38695.92 
0.1 53565.07 
0.2 52609.38 
0.3 50038.54 
0.4 44699.52 

c 

0.5 

OP II 

38324.35 
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(4) Hanurav (1967)                                                     
 20N =  

 
Method µ( )Var Y  

Mizuno 1.49 E13 
Brewer 3.46 E12 
Murthy 3.44 E12 
0.1 3.49 E12 
0.2 3.47 E12 
0.3 3.49 E12 
0.4 3.57 E12 

c 

0.5 

OP I 

3.43 E12 
0.1 3.33 E12 
0.2 3.48 E12 
0.3 3.46 E12 
0.4 3.50 E12 

c 

0.5 

OP II 

3.49 E12 
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(5) Horvitz and Thompson (1952)                                
20N =  

 
Method µ( )Var Y  

Mizuno 6410.58 
Brewer 3010.59 
Murthy 3031.40 
0.1 2988.96 
0.2 2874.78 
0.3 2831.16 
0.4 2859.07 

c 

0.5 

OP I 

3058.17 
0.1 3195.26 
0.2 2962.53 
0.3 3139.18 
0.4 3055.10 

c 

0.5 

OP II 

3009.42 
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n The Closeness between i jπ π  and ijπ  
 
Here we present several graphs for the example population of (4) Hanurav 
(1967).There are 190 possible samples for the population. 
 
Each scale on the horizontal axis represents an indexed sample, s for 
s=1,… ,190). The scale on the vertical axis represents the values of i jπ π  or ijπ .  
 
The dots in the graphs indicate the values of i jπ π  and the circles represent 
values of the ijπ . 
 
The smaller the vertical distance between the dots and the circles, the smaller 
variance.  
 
It seems that OP I yields the smallest differences between the values of i jπ π  
and ijπ  
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(Mizuno’s method) 
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(Brewer’s method) 
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(OP I)  0.5c =  
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(OP II)  0.5c =  
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 Concluding Remarks  
 

 
ü We have used the algorithm of Harvey (1976) for estimating the 

superpopulation model and examined the capacity of OWSP to yield a small 
variance.  

 
ü It seems that OWSP developed by Kim, Heeringa, and Solenberger (2006) is 

preferable to TDDP in terms of the efficiency. We also observe that OWSP 
shows better results as the population size increases. 

 
ü Since the objective function in optimization problem has a simple linear form, 

finding a solution, the sample selection probabilities, is not complicated. 
 
ü It appears that the linear constraints involving the value of c  are quite useful to 

reduce the variance. But it requires a careful choice of the value. 
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ü The empirical studies for more natural populations may be useful.  
 
ü It may need to study the stability of the variance estimator as well as the 

efficiency. 
 
ü The nonlinear superpopulation model might be adopted to develop a new 

sample selection procedure.  
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