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* Unequal Probability Sampling Procedures
with or without replacement

There exist a variety of procedures useful to $ekec
primary sampling units from each stratum in mugtge
sampling

We may be interested in

@ Probability proportional to size with replacement
(PPSWR) sampling procedure

@ 50 probability proportional to size without
replacement (PPSWOR) sampling procedures
reviewed by Brewer and Hanif (1983)

Some inclusion probability proportional to size RIP)
sampling procedures are widely used among them



+ Principle of IPPS sampling

Horvitz and Thompson (1952) produced a general
theory of PPSWOR sampling based on the use of the
following estimator of the population tot#l

QHT :i%
i=1 7§

wherey. is the value of the characteristic of théh
unit and 7z is called the first-order inclusion

probability .



Also, Sen (1953) and Yates and Grundy (1953) ddrive
the variance and variance estimatoiYef respectively:

N N

Var (Ver ) =23 (7 -7 ) (w72 -,/ )

i=1l j>i
< 7T7T 7T

Varse (Yier) = 23 == (/7 - )

i=1 j>i

where 7z, is called the second-order inclusion
probability .

If the 77 are approximately proportional to the, the

variance (or the variance estimator) can be maosecl
to zero.

The y are usually unknown in practice, but the

auxiliary variable x correlated with they, may be
available.



By setting therr proportional to thex , a substantial

reduction in the variance (or variance estimatar) be
achieved. In this case rather than the squaredsterm

(yi/ﬂi -y, /7 )2 we may focus on the following terms.

7T = 7Y

Hence IPPS sampling strategy for the smaller vadiies
these non-squared terms would be essential.



+ Desirable Requirements in IPPS Sampling

IPPS sampling designs satisfying the following
desirable requirements are usually preferred:

(i) The 7z are strictly proportional to thz

(i) The 7z; are larger than zero
(i) The non-squared terms must be larger tharo,zer
that is, 7z 71, — 17, >0
(iv) 7, /77, > ¢, where the value of is positive and as
far from zero as possible

For the details of (iv) for the stability of the nance
estimator see Hanurav (1967), Nigam, Kumar and
Gupta (1984) and Kim, Heeringa and Solenberger
(2004).



Although it seems that those requirements are simpl
the construction of IPPS sampling satisfying altrefm
is unlikely to be easy.

But nonlinear programming (NLP) approaches

suggested by Kim, Heeringa and Solenberger (2003,
2004), which assures IPPS sampling designs to pesse

those requirements, seems to be easy to implement a

useful to select two primary units per stratum.



+ NLP Approaches (2003, 2004)

Approach I:

2

N N
Minimize ZZ(ﬂi]Tj —77”.)

i=1 j>i
Subiject to i) the bounded linear constraints
CNLPni-n-j <ﬂi-jSﬂ'-]T O<CNLP£1

i7%)

i) IPPS linear constraints

N
275 =7

J#i

Note. C,, » is the maximum value o€ that allows a
solution to the NLP problem



Approach Il :

Maximize ZN:ZN‘/TU

i=1 j>i

under the same linear constraints

Approach Il :
Minimize Z@sye (\?HT),

where the summation is over all palssi
samples, which is equivalent to

Minimize ii

il

7
T,
under the same linear constraints

Note. E|:\7a\l‘ SYG (?HT )} =Varg, (?HT)

Note. Let7z, \ », denote the second-order inclusion

probabilities obtained from these NLP ajgahes



+ Criteria to Improve Efficiency Relative to
Existing Sampling Strategies

The bounded linear constraints in NLP approachgs ha
some relationships with the variances as well as
variance estimators for PPSWR sampling, Brewer's
(1963) method, Hanurav’s (1967) method and Murthy’s
(1957) method. See the followings for- 2:



(1) NLP Approaches vs. PPSWR Sampling

1) Variance:

2
i y| y
SYG(YHT) Z_;;ppj( _4JpN;;J[p - pi]

wherep, =% /> x

Var (7ims) = zzppj[yi ) y,]

'—l j>i pj

Note that ifl— 82 < L g5 gy i, j, which reduces
4p.p,

tO%]TiITj <T% \p: thenVarg,. (?HT) <Var (?PPS).



2) Variance Estimator:

2
\73}SYG(QHT)= pipj —l L_L
ni-j,NLP 4 pi pj

\78} (?PPS) =i[ﬁ —:;jjz
I j

Y

7L; np

Note that if

—1<:11 for all i, j, which reduces to

%rqr[j <TT; \ip then@sve (QHT) <V/§I’ (?PPS)-



Similarly, for Brewer’s (1963) method and Hanurav’s
(1967) method that are IPPS sampling procedures and
Murthy’s (1957) method we find the following
relationships.

(2) NLP Approaches vs. Brewer's method
1) Variance and 2) Variances Estimator

If the following is achieved for all, j, then the

smaller variance or variance estimatoradtained
than in Brewer’'s method

5 < T o < THTT,

whererz, ; indicates the second-order inclusion
probabilities obtained from Brewer’'s method



and

.1 1
Note that since - 7z7t, > 77, ; Or — 77T, <TT; , WE
2 [ i, 2 =) 1,

1
would prefeléﬂiﬂj <TT; \1p-



(3) NLP Approaches vs. Hanurav’'s method
1) Variance and 2) Variances Estimator

For the smaller variance or variance edbmian
in Hanurav’s method the following is needdd

L],
Ty < Tl np < 78T},
whererz, |, indicates the second-order inclusion

probabilities obtained from Hanurav’'s metho



and

1 2
L psllee)
7T; >_7Ti7TjO’, a=

-l (1-5)
B = 2(1- Pevy )(p(N) B p(N—l))
1= Py = Penay

P IS the largesip and p 4, Is the
second largegt .

. 1
Note that sincer <1, we would |Ike§ TETT, <TT; \1p-



(4) NLP Approaches vs. Murthy’s method

1) Variance
1 .
If 7T <71 e all i, |, the smaller
2-p - P,

variance than in Murthy’s method is achieved

Note tha&< L <1 for p >0.
2 2- P~ pj

2) Variance Estimator

For the smaller variance estimator the foita is
Needed:

7T <l

ij,M
e = 4(1- pi)(l_ pj)(l_ P - p])
i 2-p-p)°

1
Cim *1

<l].

Note tha% <



In summary, we would prefer using the following
linear constraints

1
CNLPﬂiﬂj < ﬂij = ﬂiﬂj 1 Wherei < Caip -

Note thatc, , = minsz, . /7277,



* Feasibility of NLP Approaches

16 natural populations (Rao and Bayless (1969)):

The population sizes from 9 to 20
The coefficients of variation from 0.14 t®8.

Table 1. Comparison ahin7z, /7171

No. CV(X) NLP Brewer | Hanurav
1 0.14 0.54* 0.53 0.54*
2 0.17 0.54* 0.53 0.53
3 0.30 0.51* 0.50 0.51*
4 0.40 0.51* 0.49 0.50
5 0.43 0.52* 0.49 0.50
6 0.44 0.50* 0.47 0.50*
4 0.46 0.51* 0.48 0.50
8 0.50 0.51* 0.48 0.50
9 0.52 0.50* 0.48 0.50*
10 0.59 0.51* 0.45 0.49
11 0.65 0.51* 0.47 0.49
12 0.65 0.52* 0.44 0.47
13 0.71 0.47 0.49 0.50*
14 0.91 0.51* 0.45 0.49
15 0.93 0.50* 0.39 0.48
16 0.98 0.51* 0.43 0.50

Note.+: The largest value



* Comparison of Efficiency

The percent gain in variance over Brewer’'s method
| (Var (Brewer's est.)/Var (est.)) = 1]x 10C

Table 2
JCV(X) N1 N2/ N3| H | M |[RHC |PPS

014 | +0 | +0 | +0 | +0 | 1 1 |-10
017 -0|-0 0| -0|+0| +0 | -11
030/ +0|+0 | +0 | 0| +0| +O0 | -5
040 | +0 | +0 | +0 | +O | 1| -2 | 7
043 | 1| -1/ -0|-0]| 1 1 | -7
044 | +0|/+0 | +0 | +0| 0| -2 | -7
046 | +0|+0 / +0|+0|+0| -0 | -6
050 -0/+0,-0|-0] 1| -0 | -5
052 +0|+0 / +0|+0| 0| -2 | -8
10| 059|-0|-0, 3 | 1| -2| -6 |-17
11, 065 1, +0| 2 |+0|-0| -3 |-10
12 065 -1 -1]-0| -1 6 5 | -7
13/ 071/ -1|-0|-1/-0]+0| -1 | 4
14, 091 | 1| -1/-1/-0| 4 3 | -3
15| 093 1, 1| 2| 1 7 3| -9

16| 098 | +0|+0| -1 | +0| 6 4 | -3
Note. +0 : positive value—0: negative value
. N1,N2, N3:NLP approaches, H: Hanuram&thod
M: Murthy’s method, RHC: Rao-Hartley e€¢hran method
PPS: PPSWR

Z
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Among the three NLP approaches, the third is
slightly better.

The third NLP approach is slightly better than non-
optimization methods such as those of Brewer,
Hanurav and Rao-Hartley-Cochran and compares
favorably with Murthy’'s method when CV(X) is

smaller.



The percent gain in variance estimator over
Brewer’'s method

[(CVZ(Brewer's var est.)/CV? (var.est .)— @x 10

Table 3
No. | CV(X) [N1|N2| N3 | H| M |RHC |PPS
1 0.14 | +0|+0| +0 | +O0 | 3 S | -12
2 1017 | -1|-1]|-1|-0| 3| 7 |-12
3 030 | +0|+0| 1 | +0| 1 2 -5
4 | 040| 2| 1| 1| 1 -3| -5 |-13
50043 2| -—2|-0|-0| 6| 10 | -6
6 | 044 0|0/ -0|-0] 1| 1 |-9
4 046 | -0| -1 40| -0 | 5 9 +0
8 050 2|-1|-1/-0/ 4| 8 | -3
9 052 2| -1|—2/-114] 9 | -3
10| 059 | -7/ -5|-12| 2 | 13| 20| -6
11| 065| 4| -3| 2|-2/4]| 5 | -9
12| 0.65| 5| 5| 4|-1/16| 27| 3
13| 0.712|+0 | -1| 2 | 1| 2| 4 | -3
14| 091 1| 1| 1| 2 8§ 15 2
15| 0.93| 27 23 27 17 38 7536
16 | 0.98| 16 15 17 15 22 39 19




Murthy’s method and Rao-Hartley-Cochran method
are best.

Among the three NLP approaches, the third is
slightly better.

The third NLP approach is slightly better than
Brewer's method and compares favorably with
Hanurav’s method.



4— Discussion

¢ We have shown that the bounded linear
constraints in NLP approaches are directly
related to the variance as well as the
variance estimator.

= We have suggested the criteria in NLP
approaches to establish the smaller
variance to the alternatives and they can
be used for more stability of variance
estimator.

¢ We have shown that the criteria can be
achieved in practice when using NLP
approaches.



= The optimization sampling method using
NLP appears to be better than other IPPS
sampling methods such as the methods of
Brewer and Hanurav.

= The optimization method would be more
efficient when the strata have smaller
CV(X).

e In our next study we deal with the cases
where the sample size is more than two.



