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1. Introduction 

Prior to Hansen and Hurwitz (1943) there were a 
number of multi-stage sample design developments 
involving the equal probability selection of primary 
sampling units (PSUs) from strata with subsampling 
of elements from the selected PSUs. These authors 
first suggested unequal probability selection of PSUs 
with probability proportional to size (PPS).    

With regard to the number of PSUs, n, to be 
selected from each primary stage stratum in 
multistage sampling designs, “two-per-stratum” or 
“paired-selection” designs (Kish, 1965) have many 
applications and advantages in variance estimation 
for sample estimates. 

Since the early 1940s, survey statisticians have 
developed a large number of sampling procedures 
that can be used to select n=2 PSUs from each 
stratum including PPS with replacement (PPSWR) 
sampling and 50 PPS without replacement 
(PPSWOR) sampling procedures that Brewer and 
Hanif (1983) described in detail. It is a fact that 
among these many alternatives only a very few 
PPSWOR sampling procedures have been 
recommended in the published literature and broadly 
used in practice. We may choose Brewer’s (1963) 
method, Hanurav’s (1967) method and Murthy’s 
(1957) method. These approaches are called inclusion 
probability proportional to size (IPPS or PSπ ) 
sampling methods. 

Jessen (1969), Rao and Bayless (1969) and 
Cochran (1977) empirically studied the efficiencies 
of the variances or variance estimators for different 
unequal probability sampling methods for paired 
primary stage selections. Rao and Bayless (1969) 
extended this work, covering more sampling schemes 
and populations.  

More recently Kim, Heeringa and Solenberger 
(2003, 2004) suggested nonlinear programming 
(NLP) approaches that are IPPS sampling methods. 
These methods adopt “whole sample” procedures in 
which the units are not individually drawn but an 
optimized selection probability is specified for each 
possible total sample configuration by using the 

nonlinear programming algorithms. These alter-
natives may be called optimization sampling 
methods, while others that use algorithms that do not 
focus on the selection probability of each complete 
sample may be called non-optimization sampling 
methods.  

In this paper, we begin by describing the principle 
of IPPS sampling. Second, we discuss the desirable 
features of IPPS sampling methods. Third, we review 
the NLP approaches we developed in 2003 and 2004. 
Those are easy to implement by using some publicly 
available software such as SAS/OR® (SAS, 2001). 
Fourth, we suggest some conditions to improve 
efficiency relative to certain existing sampling 
strategies and given these conditions, we show when 
it is feasible for NLP approaches to improve on 
existing methods. Finally, we examine the efficiency 
of the variances and variance estimators for the 
optimization and non-optimization sampling methods 
using the natural populations given in Rao and 
Bayless (1969). 

 
2. Principle of IPPS Sampling 
 
 
 
 

Consider a finite population U consisting of N  
distinct and identifiable units 1 2, , , Nu u u⋅ ⋅ ⋅ . Given a 

sampling scheme to select a specified sample, s , of 
n  units in the population U , define a function ( )p s , 
which indicates the selection probability of the 
sample. Then we call ( )p ⋅  a sampling design or 
sampling plan.  

The probability that the i th unit, iu , is included 

in a sample of size n under a certain sampling design , 
the so-called the first-order inclusion probability, iπ  
is defined by  
 

,

( )i
i s s S

p sπ
∈ ∈

= ∑ ,                           (2.1) 

 

where S  is the collection of all possible samples 
from U . 

 Similarly, the probability of selecting pairs of 

units ( ),i ju u  over all samples, the second-order 

inclusion probability, is defined by    
 



 
, ,

( )ij
i j s s S

p sπ
∈ ∈

= ∑  .                        (2.2) 

 

Note that in the case of 2n =  PSUs per stratum, 
this simplifies to: 

( )ij p sπ = .                             (2.3) 

A common focus in much of sampling theory is 

estimation of the population total
1

N

i
i

Y y
=

=∑  based on 

a sample, where iy  is the value of the characteristic 

of interest for element, iu . Horvitz and Thompson 
(1952) considered three subclasses of linear 
estimators of the population total when sampling 
without replacement. One of them is denoted by 

1

ˆ
n
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i

Y yα
=

=∑ ,                             (2.4) 

where iα  is a fixed weight for an element, iu , 
selected from the population.  

Also, they suggested the linear estimator, often 
called the H-T estimator of the population total and 
given by  

               ˆ
n

i
HT

i i

y
Y

π1=
= ∑ .                             (2.5)                       

As proved by Godambe (1955), the best linear 
estimator, the unbiased estimator having minimum 
variance, does not exist uniquely for the entire class 
of the known linear estimators and H-T estimator is 
the best linear estimator within the subclass (2.4).    

By using the usual definition of the variance of 

the estimator, that is, �( )HTVar Y  

� �( )( )HT HTE Y E Y
2

= − , the variance of the H-T 

estimator is obtained as follows: 

( ) ( )( )ˆ
N N N

i j i j iji i
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Var Y
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π π π
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(2.6) 
where 0iπ >  for all i . 

Then an unbiased estimator from a sample s  of 
(2.6) is given by 
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(2.7) 
where 0iπ >  and 0ijπ >  for all i  and j . 

 
Since (2.7) does not vanish even if all i iy π  are 

equal and can give a negative value, Yates and 
Grundy (1953) proposed the well-known revised 
version of  (2.6) and (2.7) given by  

�( ) ( )
N N
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HTYG i j ij

i j i i j

yy
Var Y π π π

π π
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∑∑    (2.8) 

and 
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respectively. 
 
Note that if i in y Yπ = , in other words, if the 

first-order inclusion probability iπ  is exactly 

proportional to the iy , then the H-T estimator (2.5) 

has zero variance and the sampling design ( )p ⋅  will 
be best.  

But since the iy  are usually unknown in practice, 
this design is purely theoretical. Instead, we may 
assume that an auxiliary variable ix  is available, 
whose value is known for each unit in the population 
and closely correlated with the iy . Also, we may 
assume that the information on any other 
supplementary variables for the units is lacking and 
there is no advanced knowledge of the values of the 

iy .  

The ix  can then serve as the size measure of the 

i th unit. Then /i ip x X= , where 
N

j
j

X x
1=

= ∑ , 

represents the relative measure of size for iu  and 
accordingly  

i inpπ = .                              (2.10) 

The sampling designs satisfying (2.10) (or the iπ  

are proportional to the ix ) are called IPPS sampling 
designs. 

To reduce the variance or variance estimator of 
the H-T estimator in these situations, rather than 

addressing the squared terms ( )2

i i j jy yπ π− in 

(2.8) or (2.9) we may focus on the terms:  

i j ijπ π π− , 1, ,j i N> = ⋅⋅⋅ .                (2.11) 

Note that those terms often vary widely and are 
highly dependent on the sampling schemes used. As a 
result, an IPPS sampling strategy that minimizes 
values of these non-squared terms (2.11) is essential.  

 
3. Desirable Requirements in IPPS Sampling 
 
 
 
 

Based on (2.8) and (2.9), we can identify the 
following properties of an efficient IPPS sampling 
method: 

 
   (i)The iπ  are strictly proportional to the ix ; 



  (ii) The sample size n  is fixed; 
 (iii) 0ijπ >  for all ,i j ( i j≠ ); 

 (iv) 0i j ijπ π π− >  for all ,i j ( i j≠ ); 

  (v) ij i j cπ π π >  for all ,i j ( i j≠ ), where the value  

        of c  is positive and as far from zero as possible. 
  

Of the above, (i) is fundamental for the IPPS 
sampling designs. (ii) is preferred by survey samplers 
and (iii) is a condition required for unbiased variance 
estimation. Also, (iv) and (v) are needed for non-
negativity and the stability of the variance estimator 
(2.8), respectively. We may say that (i), (ii), (iii) and 
(iv) are crucial conditions and the last one (v) is 
optional, but important for efficiency. 

   
4. Review of NLP Approaches 
 

The construction of IPPS sampling schemes that 
satisfy all five of these conditions is not a simple 
matter. In 2003 and 2004 (Kim, et al., 2003, 2004) 
we suggested NLP IPPS approaches that meet these 
requirements and are easy to implement in selecting 
two primary units per stratum. Those approaches 
were developed based on the following concepts.  

When constructing a sampling scheme, our main 
objective is that it will lead to the following features: 
(a) a smaller variance, (b) a smaller variance 
estimator, (c) a non-negative and stable variance 
estimator.  

Jessen (1969) proposed four interesting sampling 
schemes. One of them, an IPPS sampling method 
called Method 4, was designed to reduce the variance 
(2.8). It shows high efficiency in comparisons of 
variances of estimators but it is difficult to employ in 
practice because of the arbitrary and complex 
sequence of manual trials needed to determine the 
second-order inclusion probabilities. Also, it is 
limited to the samples of size 2n = . 

Hanurav (1967) and Nigam, Kumar and Gupta 
(1984) suggested alternative IPPS sampling schemes 
that provide a non-negative and stable variance 
estimator. The method of Hanurav (1967) is available 
for only 2n = . The method proposed by Nigam, et 
al.  uses binary block designs in an experimental 
design approach. Their method involves considerable 
trial and error to carry out even for cases where the 
sample size is small.  

Note that these approaches have attempted to 
address at most one of the objectives that is, (a) or (c), 
and the second one (b) has not even been tried. It 
may reflect that fact that focusing on two or more of 
these features would make the sampling scheme too 
complicated or require trade-offs between them, 
resulting in a poor result for each.  

In fact it seems that addressing two or three of 
these features simultaneously might be almost 
impossible. But for this purpose we can use NLP, 
which is available in some software such as 
SAS/OR®.    

The idea for some parts of the following three 
NLP approaches stems from Jessen’s  (1969) method. 
They address multiple features in the set (a)-(c) and 
result in optimized sample designs. We now show 
how those features can be achieved simultaneously 
using NLP.  

Consider a NLP problem specified as : 
         Minimize (or Maximize) ( )f z                (4.1) 

subject to ( ) 0tg z ≥  for all 1, ,t k= ⋅⋅⋅ ,         (4.2) 

                 ( ) 0th z =  for all 1, ,t k l= + ⋅⋅ ⋅ ,    (4.3) 

where z is a vector of m  decision variables, 
{ 1 2, , , mz z z⋅ ⋅ ⋅ }, and the function f  is called the 
objective function with inequality constraints (4.2) 
and equality constraints (4.3). 

The optimum solution to the NLP problem is a 

point *z such that *( ) ( )f z f z≥  (or *( ) ( )f z f z≤ ) 

for each feasible point z .  
Now we start with the designation of sampling 

schemes for achieving both (a) and (c).   
Jessen’s (1969) method 4 for 2n =  is an IPPS 

sampling with:   

 ijW W≈ ,                               (4.4)  

where ij i j ijW π π π= −  in (2.11) and a constant W  is 

the average of all possible ijW s: 

  2

1

( 1)
N

i
i

W n N Nπ
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ .              (4.5) 

Note that each trial of method 4 yields a different 

ijW , and inappropriately approximates W because the 

ijπ  are manually adjusted to achieve the following 

relation: 

   
( )

N

ij i
j i

π π
≠

=∑ , 1, ,i N= ⋅⋅⋅ .                 (4.6)     

We may consider the first alternative NLP 
approach below which optimizes the ijπ . 

Designate the NLP problem for 2n ≥ :  
 

\Minimize 

( ) ( )( )
N N N N

ij i j ij
i j i i j i

W W Wπ π π
2 2

1 1= > = >
− = − −∑∑ ∑∑ ,  (4.7) 

 
subject to the linear inequality constraints, 

          NLP i j ij i jc π π π π π< ≤ , 1, ,j i N> = ⋅⋅⋅ ,       (4.8)              



where NLPc  is a real number between 0 and 1, 

and the linear equality constraints, 

   ( )
N

ij i
j i

nπ π1
≠

= −∑ , 1, ,i N= ⋅⋅⋅ .          (4.9) 

 
The variables 1 2, , , nz z z⋅ ⋅ ⋅  in the NLP problem 

specification are the second-order inclusion 
probabilities, ijπ s, and (4.1), (4.2) and (4.3) 

correspond to (4.7), (4.8) and (4.9), respectively. The 
constraints (4.8) are the combined expression of (iii), 
(iv) and (v) among the desirable requirements in 
IPPS sampling.  

Note that since W  is a constant and 

1

( 1) 2
N N

ij
i j i

n nπ
= >

= −∑∑ , the minimization of the 

objective function (4.7) is equivalent to  

Minimize ( )
N N

i j ij
i j i

π π π
2

1= >
−∑∑ ,              (4.10) 

or   

  Minimize  ( )
N N

ij i j ij
i j i

π π π π2

1

2
= >

−∑∑ ,        (4.11) 

which does not depend on W . 
 

Note that (4.10) is related to (2.11). This NLP 
method to find the optimum ijπ s by minimizing (4.7) 

or (4.10) or (4.11) under the linear constraints (4.8) 
and (4.9) will be called NLP I.  

From (4.7) we can also introduce the objective 
function 

( )
N N

ij
i j i

W W
1= >

−∑∑ ,                       (4.12) 

 

which amounts to   

N N N N

i j ij
i j i i j i

π π π
1 1= > = >

−∑∑ ∑∑  .                 (4.13) 

Since the first term in (4.13) is a fixed value, 
minimization of (4.13) reduces to maximization of  
 

                
N N

ij
i j i

π
1= >
∑∑ .                             (4.14) 

 

In this case where all possible second-order inclusion 
probabilities are enumerated, since (4.14) is equal to 

( 1) 2n n − , as mentioned above, the NLP problem 
does not maximize (4.14) but simply finds solutions, 

ijπ s, meeting the constraints. We will call this 

approach NLP II.  
Next we introduce NLP III for constructing a 

sampling design that has all features (a), (b) and (c).  

In order to obtain the sampling design providing 
the smaller variance estimators, we consider the 
problem: 

  Minimize � �( ), HTs SYG

s S

Var Y
∈
∑ .              (4.15) 

 
In theory the hypothetical situation where the 

non-squared factor in (2.9) is equal to a constant can 
be considered to succeed in solving the problem 
(4.15). In other words, if 

( ) ( )i j ij ij i j ijπ π π π π π π Π1 1− = − ≈ − ,    (4.16) 

where Π  is a constant, preferably 1Π ≈ , 
(4.15) reduces to 

*
n n

ji

s S i j i i j

yy

π π
Π
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1∈ = >
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∑ ∑∑  ,             (4.17) 

where *Π Π 1= − . 
 

But since the size measures of the units in the 
population are different, achieving i j ijπ π π Π=  for 

all possible samples is impossible. Thus to achieve 
(4.15) we may consider to use 

           Minimize *i j ij

s S ij

π π π
π

Π
∈

⎛ ⎞−
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⎝ ⎠
∑ ,            (4.18) 

which is equivalent to 
        

*( )!

( )!( )!

N N
i j ij

i j i ij

N
Minimize

n N n

π π π
π

Π2
2 >

⎡ ⎤⎛ ⎞−− −⎢ ⎥⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦
∑∑ . 

(4.19) 
Note that (4.19) amounts to  

    Minimize 
N N

i j

i j i ij

π π
π>

∑∑  .                    (4.20) 

    The solution to the NLP III problem achieving 
(4.20) under the same constraints used for NLP I or 
NLP II would be successful for (b) and (c). In 

addition, since the weighted mean of � �( ), HTs SYGVar Y  

is equal to (2.8), that is,  

� �( ) � �( ), , ( )HT HTs SYG s SYG

s S

E Var Y Var Y p s
∈

⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦∑  

                          �( )HTSYGVar Y= ,               (4.21) 

the minimization of the variance estimators is directly 
related to the minimization of the variance. Thus (a) 
can be also achieved. 

To implement NLP I, NLP II and NLP III, we use 
the SAS/OR NLP procedure, which optimizes 
nonlinear (or linear) objective functions under the 
linear constraints. A variety of NLP algorithms are 
available and SAS/OR (2001) provides the 
dcoumentation to choose an optimization algorithm.  



5.Criteria to Improve Efficiency Relative to 
Existing Sampling Strategies 
 

With respect to the variances as well as variance 
estimators, the linear inequality constraints (4.8) in 
these NLP approaches have some relationship to 
PPSWR sampling, Brewer’s (1963) method, 
Hanurav’s (1967) method and Murthy’s (1957) 
method. These relationships can be summarized as a 
simple form involving a specific value of NLPc  in 
(4.8) needed to achieve better efficiency relative to 
those methods. The relationships can be proved 
through the following theorems for 2n = . 
 
Theorem 5.1  
The variance of the H-T estimator in NLP approaches 

is smaller than that for the estimator �
n

i
PPS

i i

y
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n p1
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=
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in PPSWR sampling if for ,i j , 

,i j ij NLPπ π π1
2

< ,             (5.1) 

where ,ij NLPπ  indicates the second-order inclusion 

probabilities in NLP approaches. 
Proof.   
If  2n = ,  

�( ) ,
N N

ij NLP ji
HTYG i j

i j i i j i j

yy
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⎛ ⎞⎛ ⎞
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(5.2) 
and 
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If ,ij NLP

i jp p

π 1
1

4 2
− <  for all ,i j , which reduces to 

,i j ij NLPπ π π1
2

< ,  then 

 �( ) �( )HT PPSYGVar Y Var Y< .             (5.4) 

 
Theorem 5.2  
In NLP approaches the smaller variance estimator of 

the H-T estimator compared to the estimator � PPSY   in 
PPSWR sampling is achieved if for ,i j , 

,i j ij NLPπ π π1
2

< .                        (5.5) 

Proof.   
For  2n = ,  

� �( ),
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i j ji
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Var Y

p pπ
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  (5.6) 

and  
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If 
,

i j

ij NLP

p p

π
1 1
4 4

− <  for all ,i j , which is equal to 

,i j ij NLPπ π π1
2

< , then 

 � �( ) � �( )HT PPSSYGVar Y Var Y< .               (5.8) 

Similarly, we can show the following theorems 
for the methods of Brewer and Hanurav that are IPPS 
sampling procedures. 
 
Theorem 5.3  
The admissible condition for the second-order 
inclusion probabilities to obtain the variance or 
variance estimator of the H-T estimator in NLP 
approaches that is comparable to that for Brewer’s 
method is: 

                 ,

1

2 i j ij NLPπ π π< ,                       (5.9) 

for all ,i j . 
Proof. 
 ,ij Bπ , the second-order inclusion probabilities in 

Brewer’s method, is denoted by  
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1

2 1

1 2 1 21
1

2 1 2

i j i j
ij B N

i ji

i i

p p p p

p pp

p

π

=

− −
=

⎛ ⎞ − −+⎜ ⎟−⎝ ⎠
∑

. (5.10) 

Also, 
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where 
( ) ( )

1

1 1 1

1 2 1 2
1

1 2

N
i ji

i i

K
p pp

p=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟−⎛ ⎞ −⎝ ⎠+⎜ ⎟−⎝ ⎠

∑

. 

(5.12) 
Since  1K >  or 1K < ,  

 ,

1

2ij B i jπ π π>                          (5.13) 

or 

 ,

1

2ij B i jπ π π< .                       (5.14) 

Hence it is clear from (5.13) and (5.14) that the 
admissible condition is (5.9).  
 
 
Theorem 5.4  
The admissible condition for the second-order 
inclusion probabilities to obtain the variance or 



variance estimator of the H-T estimator in NLP 
approaches that is at least comparable to that for 
Hanurav’s method is: 

                 ,
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2 i j ij NLPπ π π< ,                       (5.15) 

for all ,i j . 
Proof. 
 Let ,ij Hπ  indicate the second-order inclusion         

probabilities in Hanurav’s method. These are given 
on page 384, Hanurav (1967) and 
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and  ( )Np  is the largest ip  and ( 1)Np −  is the           

second largest ip  . 

Since 1α < ,  

,

1

2 i j ij Hπ π π< .                           (5.19) 

To achieve the given purpose, (5.15) is required from 
(5.19). 
 
Theorem 5.5  
The admissible condition for the second-order 
inclusion probabilities that the H-T estimator in NLP 
approaches has at least comparable variance with the 

estimator �
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 in Murthy’s method is  
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for all ,i j . 
Proof.   
For 2n = , the variance of the H-T estimator in NLP 

approaches is given by (5.2) and the variance of � MY  
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See pages 263-264, Cochran (1977). 
Comparing (5.2) and  (5.21), if for all ,i j , 
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(5.2) is smaller than (5.21). 
Further (5.22) becomes 

,M i j ij NLPc π π π< ,                     (5.23) 
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c
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1

1
2 Mc< < , (5.23) gives (5.20). 

 
Theorem 5.6  
The admissible condition for the second-order 
inclusion probabilities that the H-T estimator in NLP 
approaches has at least comparable variance 

estimator with the estimator � MY  in Murthy’s method 
is  

,i j ij NLPπ π π1
2

< ,             (5.24) 

for all ,i j . 
Proof.   
For 2n = , the variance estimator of the H-T 
estimator in NLP approaches is given by (5.6) and 

the variance estimator of � MY  is denoted by 

� �( ) ( )( )( )

( )
i j i j ji

M

i ji j

p p p p yy
Var Y

p pp p

2

2

1 1 1

2

⎛ ⎞− − − −
= −⎜ ⎟⎜ ⎟− − ⎝ ⎠

.          

(5.25) 
See page 264, Cochran (1977). 
 
From (5.6) and  (5.25), if for all ,i j , 

,
,

i j ij NLP
s Mc

π π π1
1

<
+

,                 (5.26) 

 where  ,

( )( )( )

( )
i j i j

s M
i j

p p p p
c

p p 2

4 1 1 1

2

− − − −
=

− −
,    (5.27) 

(5.6) is smaller than (5.25). 

But since 
,s Mc

1 1
1

2 1
< <

+
, the admissible condition 

(5.24) is given from (5.26). 
 
Corollary 5.1 
The common condition for the second-order 
inclusion probabilities that the NLP approaches are 
not to be inferior to PPSWR sampling, Brewer’s 
method, Hanurav’s method and Murthy’s method is  

,NLP i j ij NLPc π π π< , for all  ,i j ,               (5.27) 

where 0.5NLPc = . 
Proof.   
This is clear from (5.1), (5.5), (5.9), (5.15), (5.20) 
and (5.24). 
 
Remark 5.1 
The linear inequality constraints (4.8) in the NLP 
approaches are not only the combined condition of 
(iii), (iv) and (v) among the desirable requirements in 



IPPS sampling but also the admissible condition not 
to be less efficient than other methods.  
 
6. Feasibility of NLP approaches 

 
Though it is clear that the condition (5.27) is 

theoretically desirable in using NLP approaches, the 
feasibility of this condition should be verified. We 
examined NLP approaches for the selected 16 natural 
populations in Rao and Bayless (1969). Table 6.1 
shows the comparison of δ s, the minimum values of 

ij i jπ π π  in three IPPS methods: the NLP 

approaches, Brewer’s method and Hanurav’s method.  
 

Table 6.1 Comparison of δ s for 3 IPPS Methods 
No. CV  N  B  H 
1 0.14 0.54* 0.53 0.54* 
2 0.17 0.54* 0.53 0.53 
3 0.30 0.51* 0.50 0.51* 
4 0.40 0.51* 0.49 0.50 
5 0.43 0.52* 0.49 0.50 
6 0.44 0.50* 0.47 0.50* 
7 0.46 0.51* 0.48 0.50 
8 0.50 0.51* 0.48 0.50 
9 0.52 0.50* 0.48 0.50* 

10 0.59 0.51* 0.45 0.49 
11 0.65 0.51* 0.47 0.49 
12 0.65 0.52* 0.44 0.47 
13 0.71 0.47 0.49 0.50* 
14 0.91 0.51* 0.45 0.49 
15 0.93 0.50* 0.39 0.48 
16 0.98 0.51* 0.43 0.50 

Note. CV : Coefficient of variation for auxiliary 
variable ix  

           N: NLP I, NLP II and NLP III 
B: Brewer’s method 
H: Hanurav’s method 
* : The largest value 

      δ s for B and H are from Rao and Bayless (1969). 
 

Note that except for the 13th population, the δ s in 
NLP approaches are equal to 0.5 or larger than 0.5. 
This indicates that 0.5NLPc =  in (5.27) is mostly 

feasible in practice. Also, note that δ s in NLP 
approaches are mostly larger than the ones in 
Brewer’s method and mostly equal to or larger than 
the ones in Hanurav’s method. As a result NLP 
approaches can be successful in achieving the smaller 
values of the non-squared terms (2.11) compared to 
other IPPS methods. 

 
7. Comparison of Efficiency 

 

Following the feasibility study on NLP 
approaches above, this section first provides an 
empirical comparison of variances measured by the 
percent gain in variance over Brewer’s method and 
given by  

( )' ) ) 1 100Variance for Brewer s method Variance⎡ − ⎤ ×⎣ ⎦
. 

(7.1) 
 
 

Table 7.1 Comparison of variances 

Note. N1: NLP I, N2: NLP II, N3: NLP III, H: Hanurav’s method, 
M: Murthy’s method, R: method of Rao, Hartley and 
Cochran, P: PPSWR 

See Table 6.1 for CVs. 
 
 
As shown in Table 7.1, among the three NLP 

approaches, the third is slightly better. The third NLP 
approach is slightly better than non-optimization 
methods such as those of Brewer, Hanurav and Rao, 
Hartley and Cochran (1962) and compares favorably 
with Murthy’s method when the coefficient of 
variation for auxiliary variable is smaller. 

Table 7.2 shows comparison of the percent gain in 
variance estimator over Brewer’s method and given 
by  

2

2

( ' )
1 100

( )

CV variance estimator in Brewer s method

CV variance estimator

⎡ ⎤⎛ ⎞
− ×⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

(7.2) 
 
Table 7.2 indicates that Murthy’s method and the 

Rao, Hartley and Cochran’s method are best. Among 
the three NLP approaches, the third is slightly better. 
Also, the third is slightly better than Brewer’s method 
and compares favorably with Hanurav’s method. 
 
 
 
 

No. CV  N1 N2 N3 H M R P 

1 0.14 0+  0+  0+  0+  1 1 10−  

2 0.17 0−  0−  0−  0−  0+  0+  11−  

3 0.30 0+  0+  0+  0−  0+  0+  5−  

4 0.40 0+  0+  0+  0+  1−  2−  7−  

5 0.43 1−  1−  0−  0−  1 1 7−  

6 0.44 0+  0+  0+  0+  0−  2−  7−  

7 0.46 0+  0+  0+  0+  0+  0−  6−  

8 0.50 0−  0+  0−  0−  1 0−  5−  

9 0.52 0+  0+  0+  0+  0−  2−  8−  

10 0.59 0−  0−  3 1 2−  6−  17−  

11 0.65 1 0+  2 0+  0−  3−  10−  

12 0.65 1−  1−  0−  1−  6 5 7−  

13 0.71 1−  0−  1−  0−  0+  1−  4−  

14 0.91 1−  1−  1−  0−  4 3 3−  

15 0.93 1 1 2 1 7 3 9−  

16 0.98 0+  0+  1−  0+  6 4 3−  



Table 7.2 Comparison of variance estimators 

Note. See Table 7.1 

 
 8. Discussion 

  
Under the principle of IPPS sampling, the NLP 

approaches exactly satisfy the desirable requirements. 
We proved that there exists an appropriate condition 
in NLP approaches in order for the approach not to 
be less efficient than other alternatives. It seems that 
this condition will hold in most empirical problems.  

The optimization sampling method using NLP 
also appears to be better than other IPPS methods 
such as the ones of Brewer and Hanurav with respect 
to efficiencies. The optimization method would be 
more efficient when the strata have smaller 
coefficients of variation in measures of size for the 
primary sampling units. Although Murthy’s method 
is not inferior, NLP approaches may be preferred to 
his method since these give self-weighting. 

In our continuing research on NLP methods we 
will deal with the cases where the sample size is 
greater than two PSUs per stratum.  
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No. CV  N1 N2 N3 H M R P 

1 0.14 0+  0+  0+  0+  3 5 12−  

2 0.17 1−  1−  1−  0−  3 7 12−  

3 0.30 0+  0+  1 0+  1 2 5−  

4 0.40 2 1 1 1 3−  5−  13−  

5 0.43 2−  2−  0−  0−  6 10 6−  

6 0.44 0−  0−  0−  0−  1 1 9−  

7 0.46 0−  1−  0+  0−  5 9 0+  

8 0.50 2−  1−  1−  0−  4 8 3−  

9 0.52 2−  1−  2−  1−  4 9 3−  

10 0.59 7−  5−  12−  2 13 20 6−  

11 0.65 4−  3−  2−  2−  4 5 9−  

12 0.65 5 5 4 1−  16 27 3 

13 0.71 0+  1−  2 1 2 4 3−  
14 0.91 1 1 1 2 8 15 2 
15 0.93 27 23 27 17 38 75 36  
16 0.98 16 15 17 15 22 39 19 


