Inclusion Probability Proportional to Size Sampling: A Nonlinear Programming Approach to Ensure a Nonnegative and Stable Variance Estimator

Sun-Woong Kim Steven G. Heeringa Peter W. Solenberger

Dongguk University & Survey Research Center University of Michigan

Overview

- Inclusion Probability Proportional to Size (IPPS) Sampling
- Horvitz-Thompson Estimator and Variance Estimator
- Some Desirable Properties: Non-negativity and Stability of Variance Estimator
- **4** Some Methods by Earlier Workers
- **H** Nonlinear Programming (NLP) Approaches
- **4** Implementation of NLP Approaches
- **4** An Example
- Discussion

Inclusion Probability Proportional to Size (IPPS) Sampling

IPPS sampling design

D = (S, P),

where *S*: a collection of possible samples *P*: a positive function on *S*

with the following properties:

$$\sum_{s \in S} P(s) = 1$$
$$\sum_{s \in S, i \in s} P(s) = np_i, i = 1, \dots, N$$

where s is a sample, P(s) is the selection probability of each sample and p_i is the relative size of each unit

Inclusion probabilities

✓ The first-order inclusion probability π_i

: Probability that the *i*th unit is in the sample *s*

That is,

$$\sum_{s \in S, i \in s} P(s) = np_i = \pi_i$$

- ✓ The second-order inclusion probability π_{ij}
 - : Probability that the *i*th and *j*th units are both in the sample *s*

That is,

$$\sum_{s \in S, \ i, j \in s} P(s) = \pi_{ij}$$

Horvitz-Thompson Estimator and Variance Estimator

H-T (1952) estimator of the population total Y:

$$\widehat{Y}_{HT} = \sum_{i=1}^{n} \frac{y_i}{\pi_i}$$

where y_i is the value of characteristic of the unit i

Variance estimators:

✓ Sen, Yates and Grundy (1953)'s form :

$$\mathbf{v}_{1}(\hat{Y}_{HT}) = \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\pi_{i}\pi_{j} - \pi_{ij}}{\pi_{ij}} \left(\frac{y_{i}}{\pi_{i}} - \frac{y_{j}}{\pi_{j}}\right)^{2}$$

✓ A different form :

$$\mathbf{v}_{2}(\hat{Y}_{HT}) = \sum_{i=1}^{n} \frac{(1-\pi_{i})}{\pi_{i}^{2}} y_{i}^{2} + 2\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{(\pi_{ij} - \pi_{i}\pi_{j})}{\pi_{i}\pi_{j}\pi_{ij}} y_{i} y_{j}$$

Given Some Desirable Properties: Non-negativity and Stability of Variance Estimator

 \checkmark According to a sampling design, the terms

$$\left(\pi_{i}\pi_{j}-\pi_{ij}\right)$$

often vary widely and sometimes cause the variance estimator to be negative and unstable

- ✓ Achieving non-negativity and stability of Sen-Yates-Grundy's variance estimator may be essential in creating a sampling design
- ✓ In addition, the second-order inclusion probability π_{ij} must be larger than zero with respect to unbiased variance estimation

Some Methods by Earlier Workers

Jessen (1969)

Four methods of selecting probability nonreplacement samples described and examined their properties

Some of them partially achieve those desired properties and would not be appropriate to use in practice

Nigam et al. (1984)

Suggested a IPPS sampling scheme using binary block designs that are sort of experimental designs

For the cases where n = 2 as well as n > 2, it involves considerable trial and error to find a sampling design, although it achieves the desired properties, that is,

 $0.4\pi_i\pi_j < \pi_{ij} \le \pi_i\pi_j$

Nonlinear Programming (NLP) Approaches

Approach I

First, in order to minimize Sen-Yates-Grundy variance estimator, construct the following nonlinear objective function:

$$\mathbf{Min} \ \sum_{j}^{N} \sum_{j>i}^{N} \frac{\boldsymbol{\pi}_{i} \boldsymbol{\pi}_{j}}{\boldsymbol{\pi}_{ij}},$$

which is equivalent to

$$\mathbf{Min}\sum_{j}^{N}\sum_{j>i}^{N}\frac{\pi_{i}\pi_{j}-\pi_{ij}}{\pi_{ij}}$$

Second, add the bounded constraints

$$c\pi_i\pi_j < \pi_{ij} \le \pi_i\pi_j, \ 0 < c < 1, \ j > i = 1, 2, \cdots, N$$

and IPPS constraints

$$\sum_{j \neq i}^{N} \pi_{ij} = (n-1)\pi_i, \ i = 1, 2, \cdots, N$$

Third, run NLP after deciding c, which indicates the level of stability of variance estimator, and find a set of π_{ij} that is a solution to the NLP problem

Approaches II and III

Orginally developed by Kim, Heeringa and Solenberger (2003) for minimizing variance

Finding a set of π_{ij} to optimize

$$\mathbf{Min}\sum_{i=1}^{N}\sum_{j>i}^{N}(\pi_{i}\pi_{j}-\pi_{ij})^{2}$$

or

$$\mathbf{Max}\sum_{i=1}^N\sum_{j>i}^N \boldsymbol{\pi}_{ij}$$

subject to the same constraints with Approach I

Remark)

The constraint $c\pi_i\pi_j < \pi_{ij} \leq \pi_i\pi_j$ is differently expressed as

$$c < \delta_{ij} \leq 1$$
,

where $\delta_{ij} = \frac{\pi_{ij}}{\pi_i \pi_j}$

Then obtaining a sampling design providing MINMAX δ_{ij} among possible solutions by NLP may be preferable since it would remain more stable for the variance estimator

H Implementation of NLP Approaches

- ✓ SAS/OR NLP Procedure is available to optimize those non-linear objective functions under the certain constraints
- ✓ Repeating the steps in Approach I by some reasonable rules yields a set of π_{ij} achieving MINMAX δ_{ij}
- \checkmark The value of *c* less than 0.5 may be favorable because NLP is unlikely to be feasible for the higher values

<mark>4</mark> An Example

Table 1. Yates and Grundy (1953)

Three populations with N = 4, n = 2

Unit	<i>i</i> :	1	2	3	4
Relative Sizes	p_i :	0.1	0.2	0.3	0.4
Population A	<i>y_i</i> :	0.5	1.2	2.1	3.2
	y_i/p_i	5	6	7	8
Population B	<i>Y_i</i> :	0.8	1.4	1.8	2.0
	y_i/p_i	8	7	6	5
Population C	<i>y</i> _{<i>i</i>} :	0.2	0.6	0.9	0.8
	y_i/p_i	2	3	3	2

Table 2. The second-order inclusion probabilitiesobtained by different sampling schemes

Units (i, j)	$\pi_{_{ij}}$									
	Method									
	J2	J3	J4	Ν	A1	A2	A3			
1, 2	0.200	0.066	0.010	0.040	0.037	0.036	0.036			
1, 3	0.000	0.067	0.050	0.060	0.055	0.055	0.055			
1, 4	0.000	0.067	0.140	0.100	0.109	0.109	0.109			
2, 3	0.000	0.066	0.140	0.100	0.109	0.109	0.109			
2, 4	0.200	0.267	0.250	0.260	0.255	0.255	0.255			
3, 4	0.600	0.467	0.410	0.440	0.437	0.436	0.436			

J2: Jessen's method 2

J3: Jessen's method 3

J4: Jessen's method 4

N: Nigam et al.'s method

A1: Approach I

A2: Approach II

A3: Approach III

	$\delta_{_{ij}}$									
Units (i, i)	Method									
(*,))	J2	J3	J4	N	A1	A2	A3			
1, 2	2.500	0.825	0.125	0.500	0.456	0.454	0.454			
1, 3	0.000	0.558	0.417	0.500	0.454	0.454	0.454			
1, 4	0.000	0.419	0.875	0.625	0.681	0.683	0.683			
2, 3	0.000	0.275	0.583	0.417	0.454	0.455	0.455			
2, 4	0.625	0.834	0.781	0.813	0.795	0.795	0.795			
3, 4	1.250	0.973	0.854	0.917	0.909	0.909	0.909			

Table 3. δ_{ij} obtained by different sampling schemes

Note. The values in the thick borders indicate MIN δ_{ij} , while

those in A1, A2, A3 present MINMAX δ_{ij}

J2: Jessen's method 2

- J3: Jessen's method 3
- J4: Jessen's method 4
- N: Nigam et al.'s method
- A1: Approach I
- A2: Approach II

A3: Approach III

Рор	$CV\Big(\widehat{V}\Big(\widehat{Y}\Big)\Big)$								
	PPS	J 2	J3	J4	Ν	A1	A2	A3	
Α	1.600	NA	2.121	1.341	1.349	1.244	1.242	1.242	
В	1.600	NA	2.121	1.341	1.349	1.244	1.242	1.242	
С	1.000	NA	1.467	2.627	1.392	1.481	1.483	1.483	
Average	1.400	NA	1.903	1.769	1.363	1.323	1.322	1.322	
Relative Stability	100	NA	74	79	103	106	106	106	

Table 4. Comparison of stabilities of variance estimators

Note. 'NA' indicates 'Not Available' due to some zero π_{ii}

PPS: Probability proportional to size sampling with replacement

- J2: Jessen's method 2
- J3: Jessen's method 3
- J4: Jessen's method 4
- N: Nigam et al.'s method
- A1: Approach I
- A2: Approach II
- A3: Approach III

∔ Discussion

- ✓ Surely achieved the desired properties such as non-negativity and stability in variance estimation by using NLP approaches
- ✓ Very flexible for n = 2 as well as n > 2
- ✓ NLP approaches easy to carry out by using some publicly available software
- ✓ But there may be a tradeoff between variance and variance estimator since the objective function is an increasing function of 'c' However, the variance for a sampling design having MINMAX δ_{ij} may be lower than in probability proportional to size(PPS) sampling

- ✓ Helpful to do some studies for a lot of populations
- ✓ Developing a software application formed from the suggested NLP approaches and SAS/OR NLP Procedure and checking the efficiencies of some NLP algorithms provided in SAS/OR highly recommended

In our written paper, more will be coming out!