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1. Introduction 

Since 1943 when Hansen and Hurwitz first 
introduced the use of probability proportional to size 
(PPS) sampling, a number of procedures for selecting 
samples without replacement have been developed. 
Many of them are reviewed and compared in Brewer 
and Hanif (1983). One of the popular methods is an 
Inclusion Probability Proportional to Size (IPPS) 
sampling schemes used in combination with the 
Horvitz-Thompson (H-T) (1952) estimator for the 
population total.  

Jessen (1969) proposed four interesting IPPS 
sampling schemes and examined their properties. 
Nigam, Kumar, Gupta (1984) suggested an IPPS 
sampling scheme which is closely related to the 
methods of Jessen and provides a more stable 
variance estimator. However, their method uses 
binary block designs in an experimental design 
approach that involves considerable trial and error to 
carry out even for the cases where the sample size is 
small.  

 In this paper, we first suggest an IPPS sampling 
scheme for nonnegative and stable variance 
estimation. The method is simple to implement 
because it is structured as a nonlinear programming 
problem consisting of a nonlinear objective function 
and some linear constraints having flexible features. 
Second, we introduce two other IPPS sampling 
schemes that are originally developed by Kim, 
Heeringa and Solenberger (2003). They also adopt 
constraints similar to those of the first approach to 
guarantee the non-negativity and stability of the 
variance estimator. Third, we presents several strict 
constraints in nonlinear programming approaches that 
always yield the smaller variance estimator compared 
to methods such as PPS sampling with replacement, 
Murthy (1957)’s method and Brewer (1963)’s 
method, although they are restricted to the cases 
where the sample size is two. Finally, we illustrate 
statistical efficiency of the variance estimator as well 
as variance of the H-T estimator for our methods by 
applying them to an example problem in the literature. 
 

2. Variance Estimator of Horvitz-Thompson 
Estimator 
 
 
 
 

Let ix represent the size measure of the unit i  in 

a population of N  distinct and identifiable units and 
the relative measure of size for unit i  denote ip  by 

 
 

/i ip x X= ,                         (2.1) 
 
 

where 
N

j
j

X x
1=

=∑ . 

 
Further, let the selection probability of a sample, 

s , of n  specified units in the population be denoted 
by ( )p s . The function ( )p ⋅ is often called the 
sampling design or sampling plan. Then the 
probability of selecting unit i , so-called the first-
order inclusion probability, iπ  is defined by  
 
 

,
( )i

i s s S
p sπ

∈ ∈

= ∑ ,                           (2.2) 
 

where S  is a set of all possible samples. 
  

Similarly, the second-order inclusion probability 
indicating the total probability of selecting units 
i and j , ijπ  is defined by    

 
 

 
, ,

( )ij
i j s s S

p sπ
∈ ∈

= ∑  .                        (2.3) 
 

 
The H-T estimator of the population total is  
 

               
n

i
HT

i i

y
Y

π1=

=∑ ,                             (2.4)                       
 

where  iy  is the value of the characteristic of interest 
for the unit i . 
 

The variance of the H-T estimator is also given as 
follows: 
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(2.5) 
 
Therefore, an unbiased estimator of (2.5) is given 

by 

  ( ) ( )( )n n n
i j i j iji i

HT
i i j i i j iji

y yy
Var Y

π π ππ
π π ππ

2

2
1 1

1
2

= = >

−−
= −∑ ∑∑ . 

(2.6) 
 

A different form of (2.6) is given by Sen (1953) 
and Yates and Grundy (1953). This estimator is 

 

( ) n n
i j ij ji

HTSYG
i j i ij i j

yy
Var Y

π π π
π π π

2

1= >

 −
= −  

 
∑∑    (2.7) 

 
based on a more suitable form of the variance of (2.3) 
 

 ( ) ( )
N N

ji
HTSYG i j ij

i j i i j

yy
Var Y π π π

π π

2

1= >

 
= − −  

 
∑∑ .  (2.8)    

      
The squared factor in the Sen-Yates-Grundy 

variance estimator (2.7) (or the variance of the H-T 
estimator (2.8)) will be smaller when the variation 
between the /i iy π  is small, for example, when the 

iπ  is proportional to the ix and the iy  are also 
proportional to the ix .  

The ( )i j ij ijπ π π π−  factor in (2.7), often varies 
widely and can be negative and unstable, depending 
on the sampling design. Hence achieving non-
negativity and stability of the Sen-Yates-Grundy 
variance estimator may be essential in creating a 
sampling design. In addition, the second-order 
inclusion probability ijπ  must be larger than zero 
with respect to unbiased variance estimation. These 
are often called the desirable properties for variance 
estimation. 

 
 
3. The Suggested Approaches 
 

In a sample survey we usually assume that the 
chosen size measures of the units in the population 
may be approximately proportional to the values of 
the characteristic of interest. We introduce the 
following three nonlinear programming (NLP) 
approaches for constructing a sampling design that 
not only has the smaller variance estimates (or the 
smaller variance) but also achieves the desirable 
properties in variance estimation. 

(1) Approach I 
 

We may be interested in reducing the variation 
between the non-squared factor in (2.7) so that we   
obtain the sampling design providing the smaller 
estimated variances (or producing the smaller bounds 
on the error of estimation) over all possible samples. 
In order to do so, we first consider the following 
problem: 

 
             ( )HTSYG

s S

Minimize Var Y
∈
∑ ,               (3.1) 

where Σ  represents summation over all possible 
samples. 
 

In theory the hypothetical situation where the 
non-squared factor in (2.7) is equal to a constant can 
be considered to succeed in solving the problem (3.1). 
In other words, if 

 
( ) ( )i j ij ij i j ijπ π π π π π π Π1 1− = − = − ,      (3.2) 

where Π  is a constant,  
 
(3.1) reduces to 
 

*
n n

ji

s S i j i i j

yy
π π

Π
2

1∈ = >

  
 −     

∑ ∑∑  ,               (3.3) 

where *Π Π 1= − . 
 

But since the size measures of the units in the 
population are different, achieving i j ijπ π π Π=  for 
all possible samples is impossible. Thus to achieve 
(3.1) we may consider to use 
 

             i j ij

s S ij

Minimize
π π π

π
Π

∈

 −
−  

 
∑ ,            (3.4) 

 
which is equivalent to 
        

( )!
( )!( )!

N N
i j ij

i j i ij

NMinimize
n N n

π π π
π

Π2
2 >

  −− −   − −   
∑∑ . 

(3.5) 
 
Note that (3.5) amounts to  
 

      
N N

i j

i j i ij

Minimize
π π
π>

∑∑                          (3.6) 

     
The Approach I consists of the following steps: 

3822

ASA Section on Survey Research Methods



 First, establish the nonlinear objective function in 

(3.6), that is, 
N N

i j ij
i j i

π π π
>

∑∑ . 

Second, we add the following two constraints to 
the objective function: 
 
  (i ) Bounded constraints 

 
  i j ij i jcπ π π π π< ≤ , 1, ,j i N> = ⋅⋅⋅ ,        (3.7)              

where c  is a real number between 0 and 1. 

 

  (ii) IPPS constraints 

 

            ( )
N

ij i
j i

nπ π1
≠

= −∑ , 1, ,i N= ⋅⋅⋅ .               (3.8)     

 
It is noted that the constraint (3.7) is required for 

both non-negativity and stability of the Sen-Yates-
Grundy variance estimator (2.7). 

Finally, by using a NLP algorithm we find a set of 
the second-order inclusion probabilities, the optimum 
solution to the NLP problem consisting of the   
objective function (3.6), the constraints, (3.7) and 
(3.8), and an appropriate value of c which determines 
the level of stability of the variance estimator.  

Note that since the second-order inclusion 
probabilities are expressed as the sum of the selection 
probabilities, as in (2.3), we can obtain the selection 
probability of each sample, p(s), from the equations 
of those second-order inclusion probabilities. 
 

(2) Approaches II and III 
 

One of the purposes of the Approach I is to 
minimize the estimated variance, not necessarily the 
variance of the H-T estimator. But it is directly 
related to the minimization of the variance because 
the Sen-Yates-Grundy variance estimator (2.7), is an 
unbiased estimator of the variance of the H-T 
estimator (2.8) and the relation is expressed as 

 

( ) ( ) ( )HT HTSYG SYG
s S

E Var Y Var Y p s
∈

   =      ∑  

                           ( )HTSYGVar Y= .                   (3.9) 

 
So the NLP approach to minimize the variance of 

the H-T estimator can also result in minimizing the 
estimated variances of samples selected under the 
design solution. 

 

The two NLP approaches to minimize the 
variance have been developed by Kim, Heeringa and 
Solenberger (2003) (See pages 2169-2170 for the 
details), but the previous methods did not guarantee 
the non-negativity and stability of the variance 
estimator. However, to achieve non-negativity and 
stability it is only necessary to add the bounded 
constraints (3.7) and the IPPS constraints (3.8) to 
each of the following objective functions proposed by 
them.      

 

            ( )
N N

i j ij
i j i

Minimize π π π
2

1= >
−∑∑               (3.10) 

 

                
N N

ij
i j i

Maximize π
1= >
∑∑                              (3.11) 

 

 
Accordingly, under the same constraints as in the 

Approach I we can find the solution to (3.10) or 
(3.11). Here we call those NLP Approaches II and III, 
respectively. 

The bounded constraints (3.7) can be expressed as  
 

1ijc δ< ≤ , 1, ,j i N> = ⋅⋅ ⋅  ,             (3.12) 

where ij
ij

i j

π
δ

π π
= . 

 
Given this, obtaining a sampling design that 

achieves ijMINMAX δ , which indicates the 
maximum among the minimum ijδ s from the   
possible NLP solutions for each approach, may be 
preferable since it results in better stability for the 
variance estimator.  

A variety of NLP software is available for 
implementing the three approaches. We use 
SAS/OR software, specifically the NLP Procedure 
to optimize those objective functions under the 
certain constraints. Refer to SAS/OR (2001) for the 
details. 

The choice of an appropriate value of c  that 
yields a set of the second-order inclusion 
probabilities achieving ijMINMAX δ  is not difficult. 
By repeating the steps as in the Approach I and 
applying some reasonable rules we can easily find the 
maximum value of c  that still permits a solution to 
the NLP problem.  

 
 

4. Strict Constraints for NLP approaches  
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PPS sampling with replacement or Murthy 
(1957)’s method or Brewer (1963)’s method are 
established sample selection methods. These methods 
have been widely used in many statistical 
organizations and by a lot of survey samplers.  

The flexibility in the use of the value of c  in the 
bounded constraints (3.7) in our NLP approaches is 
important since we can determine the value of the 
constraints that always yield the smaller variance 
estimator compared to those popular methods. We 
present those constraints as follows. Here the sample 
size is restricted to 2n = . 

Since 2i ipπ = , the Sen-Yates-Grundy variance 
estimator (2.7) can be written 

 

    ( ) i j ji
HTSYG

ij i j

p p yy
Var Y

p pπ

2
1
4

  
= − −    
  

,          

1, ,j i N> = ⋅⋅ ⋅      (4.1) 
  
For PPS sampling with replacement, the variance 

estimator is  
 

( ) ji
PPS

i j

yy
Var Y

p p

2
1
4
 

= −  
 

,               (4.2) 

where ji
PPS

i j

yy
Y

p p
1
2
 

= +  
 

, 1, ,j i N> = ⋅⋅ ⋅  

 
The variance estimator for Murthy (1957)’s 

method is given by 
 

( ) ( )( )( )
( )

i j i j ji
M

i ji j

p p p p yy
Var Y

p pp p

2

2

1 1 1
2

 − − − −
= −  − −  

,               

(4.3) 

where ( ) ( ) ji
M j i

i j i j

yy
Y p p

p p z z
1 1 1

2
 

= − + − 
− −   

, 

1, ,j i N> = ⋅⋅⋅ . Refer to Cochran (1977), page 264. 
 

By comparison of (4.1) and (4.2), for all samples 
clearly    
 

( ) ( )HT PPSSYGVar Y Var Y<               (4.4) 

when  

                   i j

ij

p p
π

1 1
4 4

− <  .                         (4.5) 

 
An alternative form of (4.5) can be given by 
 

PPS i j ijc π π π< ,                           (4.6) 
where .PPSc 0 5= . 
 

Hence when we use 0.5c = in the bounded 
constraints (3.7) in our NLP approaches, it is 
expected that we can always obtain the smaller 
variance estimator than in PPS sampling with 
replacement. 

Similarly, from (4.1) and (4.3), we see that if  
 

( )( )( )
( )

i j i j i j

ij i j

p p p p p p
p pπ 2

1 1 11
4 2

− − − −
− <

− −
,    (4.7) 

then 
 

( ) ( )HT MSYGVar Y Var Y< .                (4.8) 

 
Since (4.7) can be expressed as  
 

,ij M i j ijc π π π< ,                     (4.9) 

where ,
,

ij M
ij M

c
p

1
1

=
+

  and 

 

, 2

4(1 )(1 )(1 )
(2 )
i j i j

ij M
i j

p p p p
p

p p
− − − −

=
− −

,        (4.10) 

using the non-constant
,

1
1ij

ij M

c
p

=
+

, 1, ,j i N> = ⋅⋅ ⋅  

in the NLP approaches, which is not a constant, can 
always yield the smaller variance estimator than in 
Murthy’s method.  
 

Considering , 1ij Mp < for all i , j  in (4.10), the 
following relation is easily derived. 

 
,PPS ij Mc c<                            (4.11) 

 
Thus the use of ,ij Mc gives more strict constraints 
than in the use of 0.5PPSc = . 
 

On the other hand, Brewer’s method is an IPPS 
sampling scheme like our NLP approaches, and (2.7) 
is used as the formula of the variance estimator. To 
provide the smaller variance estimator than in 
Brewer’s method, we need to use the constraints 

 
,ij B i j ijc π π π< ,                       (4.12) 
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where ,
1 1 1

4 1 2 1 2ij B
i j

c
D p p
 

= +  − − 
and 

1

(1 )
1 2

N
i i

i i

p p
D

p=

−
=

−∑  . 

 
Since ,ij Bc  is not always larger than 0.5 , we cannot 
say that ,ij Bc  always yields stricter constraints than 

0.5PPSc = . 
We have derived these strict constraints to 

illustrate what is required for our NLP approaches to 
yield smaller variance estimates than in the well-
known three methods. Successful NLP solutions that 
apply constraints that match or exceed the values of 

PPSc  or ,ij Mc  or ,ij Bc  can achieve the smaller 
variance estimates as well as greater stability of the 
variance estimator. But note that whether or not the 
solutions of the NLP approaches exist subject to the 
strict constraints may depend on the sampling design 
problem, that is, the size measures of the units in the 
population. 
 
 
5. An Illustration 
 

We have chosen a numerical example given by  
Yates and Grundy (1953) to examine the results from 
the suggested NLP approaches with respect to the 
desirable properties for the Sen-Yates-Grundy 
variance estimator as well as the reductions in the 
variance of  H-T estimator. Table 5.1 presents the 
three artificial populations of 4N = showing the 
relative size of each unit, ip  and the value of the 
characteristic of each unit, iy . A sample of size 

2n = is selected from each population. Note that 
when 2n = , ( )ij p sπ = . The correlation coefficients 
between the size measure ip  and the value of the 
characteristic iy  for the three populations are 
respectively: 0.995, 0.976, 0.876. 

 
Table 5.1 Three Populations of  4N =  

Unit i : 1 2 3 4 

Relative Size ip : 0.1 0.2 0.3 0.4 

Population A  iy : 0.5 1.2 2.1 3.2 

Population B  iy : 0.8 1.4 1.8 2.0 

Population C  iy : 0.2 0.6 0.9 0.8 

 
The ijπ  and the ijδ obtained from Approach I, 

Approach II and Approach III as the value of c  is 

increased by 0.100 from 0.000c =  to 0.400c = are 
shown in Table 5.2, Table 5.3 and Table 5.4, 
respectively. Note that the results for Approach I are 
identical for 0.100c =  to 0.400c = and those in 
Approach II are same when 0.000c =  and 0.100c = . 
The ijπ s from the three NLP approaches are very 
different from each other, yielding different ijδ s, 
except for 0.400c =  in Approaches II and III.  But 
the pairs of units having minimum ijδ  are same for 
Approaches II and III.  

 
 

Table 5.2 ijπ  and ijδ  from Approach I 

 c  
 0.000 0.100 0.200 0.300 0.400 

12π

( 12δ )
0.0000 

(0.0000*)
0.0451 

(0.5638)
0.0451 

(0.5638) 
0.0451 

(0.5638)
0.0451 

(0.5638)

13π

( 13δ )
0.0742 

(0.6181)
0.0570 

(0.4752)
0.0570 

(0.4752) 
0.0570 

(0.4752)
0.0570 

(0.4752)

14π

( 14δ )
0.1258 

(0.7864)
0.0979 

(0.6117)
0.0979 

(0.6117) 
0.0979 

(0.6117)
0.0979 

(0.6117)

23π

( 23δ )
0.1258 

(0.5243)
0.0979 

(0.4078*)
0.0979 

(0.4078*) 
0.0979 

(0.4078*)
0.0979 

(0.4078*)

24π

( 24δ )
0.2742 

(0.8568)
0.2570 

(0.8032)
0.2570 

(0.8032) 
0.2570 

(0.8032)
0.2570 

(0.8032)

34π

( 34δ )
0.4000 

(0.8333)
0.4451 

(0.9273)
0.4451 

(0.9273) 
0.4451 

(0.9273)
0.4451 

(0.9273)

Note. * : minimum ijδ  

 
 

Table 5.3 ijπ  and ijδ  from Approach II 

 c  
 0.000 0.100 0.200 0.300 0.400 

12π

( 12δ )
0.0133 

(0.1667*)
0.0133 

(0.1667*)
0.0160 

(0.2000*) 
0.0240 

(0.3000*)
0.0320 

(0.4000*)

13π

( 13δ )
0.0533 

(0.4444)
0.0533 

(0.4444)
0.0520 

(0.4333) 
0.0480 

(0.4000)
0.0480 

(0.4000*)

14π

( 14δ )
0.1333 

(0.8333)
0.1333 

(0.8333)
0.1320 

(0.8250) 
0.1280 

(0.8000)
0.1200 

(0.7500)

23π

( 23δ )
0.1333 

(0.5556)
0.1333 

(0.5556)
0.1320 

(0.5500) 
0.1280 

(0.5333)
0.1200 

(0.5000)

24π

( 24δ )
0.2533 

(0.7917)
0.2533 

(0.7917)
0.2520 

(0.7875) 
0.2480 

(0.7750)
0.2480 

(0.7750)

34π

( 34δ )
0.4133 

(0.8611)
0.4133 

(0.8611)
0.4160 

(0.8667) 
0.4240 

(0.8833)
0.4320 

(0.9000)

Note. * : minimum ijδ  
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Table 5.4 ijπ  and ijδ  from Approach III 

 c  
 0.000 0.100 0.200 0.300 0.400 

12π  
( 12δ ) 

0.0000 
(0.0000*) 

0.0080 
(0.1000*) 

0.0160 
(0.2000*) 

0.0240 
(0.3000*)

0.0320 
(0.4000*)

13π  
( 13δ ) 

0.0500 
(0.4167) 

0.0515 
(0.4292) 

0.0480 
(0.4000) 

0.0445 
(0.3708)

0.0480 
(0.4000*)

14π  
( 14δ ) 

0.1500 
(0.9375) 

0.1405 
(0.8781) 

0.1360 
(0.8500) 

0.1315 
(0.8219)

0.1200 
(0.7500)

23π  
( 23δ ) 

0.1500 
(0.6250) 

0.1405 
(0.5854) 

0.1360 
(0.5667) 

0.1315 
(0.5479)

0.1200 
(0.5000)

24π  
( 24δ ) 

0.2500 
(0.7813) 

0.2515 
(0.7859) 

0.2480 
(0.7750) 

0.2445 
(0.7641)

0.2480 
(0.7750)

34π  
( 34δ ) 

0.4000 
(0.8333) 

0.4080 
(0.8500) 

0.4160 
(0.8667) 

0.4240 
(0.8833)

0.4320 
(0.9000)

Note. * : minimum ijδ  
 
As described in the section 3, since we may prefer 

a sampling design giving ijMINMAX δ  in the sense 
that it would provide the more stable variance 
estimator, the maximum of available values of c  
should be used.  For this problem, 0.454c =  is the 
largest value that still yields a NLP solution. Table 
5.5 shows the solutions of the three approaches when 

0.454c = is applied. Although it seems that those 
from Approach I and Approaches II and III are 
different each other, especially for the ijMINMAX δ , 
the solutions are nearly identical.  

 
Table 5.5 ijπ  and ijδ  from Three Approaches When 

Using 0.454c =  

 AI AII AIII 

12π  
( 12δ ) 

0.0365 
(0.4563) 

0.0363 
(0.4538**) 

0.0363 
(0.4538**) 

13π  
( 13δ ) 

0.0545 
(0.4542**) 

0.0545 
(0.4542) 

0.0545 
(0.4542) 

14π  
( 14δ ) 

0.1090 
(0.6813) 

0.1092 
(0.6825) 

0.1092 
(0.6825) 

23π  
( 23δ ) 

0.1090 
(0.4542**) 

0.1092 
(0.4550) 

0.1092 
(0.4550) 

24π  
( 24δ ) 

0.2545 
(0.7953) 

0.2545 
(0.7953) 

0.2545 
(0.7953) 

34π  
( 34δ ) 

0.4365 
(0.9094) 

0.4363 
(0.9090) 

0.4363 
(0.9090) 

Note. AI: Approach I, AII: Approach II, AIII: Approach III 
             ** : MINMAX ijδ  

We do not deal here with the application of the 
strict constraints that always provide the smaller 
variance estimator than in PPS sampling with 
replacement, Murthy’s method and Brewer’s method 
because in this case the maximum of 0.454c =  is 
less than 0.5PPSc = in (4.6). So without using those 
constraints we compare our suggested approaches to 
those three methods. 

Table 5.6 shows a comparison of the ijπ  and the 

ijδ of five IPPS sampling schemes, that is, Jessen’s 
two methods, the two sampling plans from Nigam et 
al.’s method and Brewer’s method. The results in the 
methods are quite different from those in Table 5.5. 
And since each minimum ijδ  for these comparative 
methods is smaller than in Approaches I, II and III, 
the NLP approaches are expected to yield the more 
stable variance estimator. Note that Jessen’s Method 
2 even provides zero ijπ  and the non-negativity of 
variance estimator is not guaranteed because some 
values of ijδ  are larger than one. 

 
Table 5.6 ijπ  and ijδ  from Five Selected Methods 

 J2 J3 N2 N3 B 

12π

( 12δ )
0.2000 

(2.5000)
0.0666 

(0.8325)
0.0500 

(0.6250) 
0.0400 

(0.5000)
0.0277 

(0.3465*)

13π

( 13δ )
0.0000 

(0.0000*)
0.0667 

(0.5558)
0.0500 

(0.4167*) 
0.0600 

(0.5000)
0.0535 

(0.4455)

14π

( 14δ )
0.0000 

(0.0000*)
0.0667 

(0.4169)
0.1000 

(0.6250) 
0.1000 

(0.6250)
0.1188 

(0.7426)

23π

( 23δ )
0.0000 

(0.0000*)
0.0666 

(0.2775*)
0.1000 

(0.4167*) 
0.1000 

(0.4167*)
0.1188 

(0.4950)

24π

( 24δ )
0.2000 

(0.6250)
0.2667 

(0.8334)
0.2500 

(0.7813) 
0.2600 

(0.8125)
0.2535 

(0.7921)

34π

( 34δ )
0.6000 

(1.2500)
0.4667 

(0.9723)
0.4500 

(0.9375) 
0.4400 

(0.9167)
0.4277 

(0.8911)

Note. J2: Jessen (1969)’s method 2 
    J3: Jessen (1969)’s method 3 
   N2:Nigam et al. (1984)’s method 
        (the second  sampling plan) 
   N3:Nigam et al. (1984)’s method 
        (the third sampling plan) 
     B: Brewer (1963)’s method 
     * : minimum ijδ  

The results for schemes J2, J3, N2 and N3 are from Jessen 
(1969), page 183 and Nigam et al. (1984), page 567, 
respectively. 
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In Table 5.7 we compare the stabilities using the 
following formula of coefficient of variation (CV) of 
variance estimators based on the ijπ  in Table 5.5 and 
5.6: 

 

( )( ) ( ) ( )CV Var Y Var Var Y E Var Y   =      

                                                      

                   
2 2

( ) ( ) ( )E Var Y Var Y Var Y   = −     

(4.1) 
 
We added the two PPS sampling schemes of PPS 

sampling with replacement and Murthy’s method in 
the table to compare with IPPS sampling methods. 

 
 

Table 5.7 Comparison of Stabilities of Estimated 
Variances 

( )( )CV Var Y  
Pop. 

PPS AI AII AIII J3 N3 B M 

A  1.600 1.244 1.242 1.242 2.127 1.349 1.160 1.015

B  1.600 1.244 1.242 1.242 2.127 1.349 1.160 1.015

C  1.000 1.481 1.483 1.483 1.473 1.392 1.623 0.713

Ave. 1.400 1.323 1.322 1.322 1.909 1.363 1.314 0.914

Rel. 
Sta. 

100 106 106 106 73 103 107 153 

Note. PPS: probability proportional to size sampling with    
                  Replacement 
             M: Murthy (1957)’s method 
         Ave.: Average of the CV for the three populations 
   Rel. Sta.: Relative Stability  
 
See the notes in Table 5.5 and 5.6 for the others. 

 
 
When comparing the relative stability, Murthy’s 

method is best, while Jessen’s Method 3 is 
considerably less efficient. Our NLP approaches and 
Brewer’s method are almost similar and better than 
Nigam et al.’s method and PPS sampling method.  

We have not shown the CV in terms of 0.000c =  
to 0.400c =  in NLP approaches. Some of them yield 
better stability of variance estimators than when 

0.454c = , but we may prefer using the maximum 
( 0.454c = ) because we would be mainly interested 
in the reduction of the variation for the non-squared 
factor in (2.7) at the beginning of sample design.  

Also, there may exist a tradeoff between the CV 
of variance estimator and variance of the H-T 
estimator in NLP approaches. It comes from the fact 

that a change of the objective function by a change of 
the value of c  yields a change in the ijπ , and the 

increase (decrease) of the variance ( )Var Y in (4.1) by 
a change of the ijπ  results in the decrease (increase) 
of the CV in (4.1). Note that the objective function is 
an increasing function of the value of c  

Table 5.8 presents a comparison of variances used 
in the calculation of the CV of the variance estimator 
in Table 5.7. Brewer’s method is the best. The NLP 
approaches are more efficient than Murthy’s method 
and Nigam et al.’s method. The PPS sampling is the 
worst. 

 
 

Table 5.8 Comparison of Variances 

( )Var Y  
Pop.

PPS AI AII AIII J3 N3 B M 

A 0.500 0.300 0.300 0.300 0.367 0.310 0.282 0.312

B 0.500 0.300 0.300 0.300 0.367 0.310 0.282 0.312

C 0.125 0.055 0.055 0.055 0.033 0.050 0.059 0.070

Ave. 0.375 0.218 0.218 0.218 0.256 0.223 0.208 0.232

Rel. 
Eff.

100 172 172 172 146 168 180 162 

Note. Rel. Eff.: Relative Efficiency  
         See the notes in Table 5.5, Table 5.6 and Table 5.7 for        
         the others. 
 

 
In summary, the NLP approaches exactly achieve 

the non-negativity of the Sen-Yates-Grundy variance 
estimator and the sampling design having 

ijMINMAX δ would provide the more stable variance 
estimator. As shown above, with respect to the 
stability of the variance estimator as well as the 
variance of the estimator they are better than Jessen’s 
methods, Nigam et al.’s method and PPS sampling 
with replacement and comparable with Brewer’s 
method and Murthy’s method. 

 
 

6. Conclusion 
 

We have suggested three NLP approaches. They 
surely achieve the desirable properties such as non-
negativity and stability in variance estimation. They   
are very flexible for 2n =  as well as 2n >  and can 
be easily implemented by using some publicly 
available software including SAS/OR. 

There may be a tradeoff between the stability of 
the variance estimator and variance of the estimator if 
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we would like to use the higher value of ‘ c ’ in the 
bounded constraints. But the variance for a sampling 
design having ijMINMAX δ may be lower than in 
probability proportional to size sampling with 
replacement.  

Developing a software application based on the 
suggested NLP approaches and SAS/OR NLP 
procedure and checking the efficiencies of some NLP 
algorithms provided in SAS/OR are highly 
recommended. 

In future research, we will draw empirical 
comparisons to examine the tradeoff between the 
variance estimator and variance of the estimator for 
samples of different size and populations. 
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