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1. Introduction

Since 1943 when Hansen and Hurwitz first
introduced the use of probability proportional to size
(PPS) sampling, a number of procedures for selecting
samples without replacement have been developed.
Many of them are reviewed and compared in Brewer
and Hanif (1983). One of the popular methods is an
Inclusion Probability Proportional to Size (IPPS)
sampling schemes used in combination with the
Horvitz-Thompson (H-T) (1952) estimator for the
population total.

Jessen (1969) proposed four interesting 1PPS
sampling schemes and examined their properties.
Nigam, Kumar, Gupta (1984) suggested an IPPS
sampling scheme which is closely related to the
methods of Jessen and provides a more stable
variance estimator. However, their method uses
binary block designs in an experimental design
approach that involves considerable trial and error to
carry out even for the cases where the sample size is
small.

In this paper, we first suggest an IPPS sampling
scheme for nonnegative and stable variance
estimation. The method is smple to implement
because it is structured as a nonlinear programming
problem consisting of a nonlinear objective function
and some linear constraints having flexible features.
Second, we introduce two other IPPS sampling
schemes that are originaly developed by Kim,
Heeringa and Solenberger (2003). They aso adopt
constraints similar to those of the first approach to
guarantee the non-negativity and stability of the
variance estimator. Third, we presents several strict
constraints in nonlinear programming approaches that
always yield the smaller variance estimator compared
to methods such as PPS sampling with replacement,
Murthy (1957)’s method and Brewer (1963)'s
method, although they are restricted to the cases
where the sample size is two. Finaly, we illustrate
statistical efficiency of the variance estimator as well
as variance of the H-T estimator for our methods by

applying them to an example problem in the literature.
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2. Variance Estimator of Horvitz-Thompson
Estimator

Let X represent the size measure of the unit i in

apopulation of N distinct and identifiable units and
the relative measure of size for unit i denote p, by

p=x/X, (2.1)

where X =ixj .

i=1

Further, let the selection probability of a sample,
s, of n specified units in the population be denoted
by p(s) . The function p(Q)]is often caled the
sampling design or sampling plan. Then the
probability of selecting unit | , so-caled the first-
order inclusion probability, 7z is defined by

= ps),

iOsB S

where S isaset of al possible samples.

(2.2)

Similarly, the second-order inclusion probability
indicating the total probability of selecting units
iand j, 77, isdefined by

=Y ) (23)
i,j0sE S
The H-T estimator of the population total is
~ _ n yI
Yur =) =4, (2.4)

i= 7T
where vy, isthe value of the characteristic of interest
for the unit i .

The variance of the H-T estimator is also given as
follows:
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Var (?HT)= P

i y'(l-7

i= ﬂ; i=1 j>i
(2.5)

Therefore, an unbiased estimator of (2.5) is given
by

Var (YHT) Z 2 (::7'2 ) R

IT IT 7?'
(2.6)

A different form of (2.6) is given by Sen (1953)
and Y ates and Grundy (1953). This estimator is

n n

Var s (YHT) —ZZ

[' yj] (2.7)
i ﬂ. T 7

based on a more suitable form of the variance of (2.3)

)[:’T i’;J (28

The sguared factor in the Sen-Yates-Grundy
variance estimator (2.7) (or the variance of the H-T
estimator (2.8)) will be smaller when the variation
between the y, /77 is small, for example, when the
7T is proportional to the x and the y are aso
proportional to the x, .

The (777 - 77)/ 7 factor in (2.7), often varies
widely and can be negative and unstable, depending
on the sampling design. Hence achieving non-
negativity and stability of the Sen-Yates-Grundy
variance estimator may be essentia in creating a
sampling design. In addition, the second-order
inclusion probability 7z, must be larger than zero
with respect to unbiased variance estimation. These

are often called the desirable properties for variance
estimation.

Var% (? HT ) =

3. The Suggested Approaches

In a sample survey we usualy assume that the
chosen size measures of the units in the population
may be approximately proportional to the values of
the characteristic of interest. We introduce the
following three nonlinear programming (NLP)
approaches for constructing a sampling design that
not only has the smaller variance estimates (or the
smaller variance) but also achieves the desirable
properties in variance estimation.

vy, (777 = 17)
zzz—’?.
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(1) Approach |

We may be interested in reducing the variation
between the non-squared factor in (2.7) so that we
obtain the sampling design providing the smaller
estimated variances (or producing the smaller bounds
on the error of estimation) over al possible samples.
In order to do so, we first consider the following
problem:

MinimizeY"Var sc (\?HT) , (3.)
sOs

where X represents summation over all possible

samples.

In theory the hypothetical situation where the
non-squared factor in (2.7) is equal to a constant can
be considered to succeed in solving the problem (3.1).
In other words, if

(mr-m)) g=Cmg F-1=N-1, (3.2
where N isaconstant,
(3.1) reducesto
.\ n n yI _ﬁ 2
: ﬂ]S[tl;[E 7T,J ] , 59

where M° =M -1.

But since the size measures of the units in the
population are different, achieving 7z 77/ =1 for

all possible samples is impossible. Thus to achieve
(3.1) we may consider to use

MmmzeZ[—ﬂ‘ q-l'l], (34)
74
which is equivaent to
M|n|m|ze[(n_2)!(N_n)!Z;[ 7 I'IH
(3.5
Note that (3.5) amountsto
MinimizezN:zN:ﬂ (3.6)

i ij

The Approach | consists of the following steps:
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First, establish the nonlinear objective function in
N N
(3.6), thatis, "> 77/ 77
i
Second, we add the following two constraints to
the objective function:

(i ) Bounded constraints

< g< g j>i=L0IN, (3.7)
where ¢ isarea number between 0 and 1.
(i) IPPS constraints

N

dYm=(n-1),i=10N,. (3.8)

j#i

It is noted that the constraint (3.7) is required for
both non-negativity and stability of the Sen-Yates-
Grundy variance estimator (2.7).

Finally, by using a NLP algorithm we find a set of
the second-order inclusion probabilities, the optimum
solution to the NLP problem consisting of the
objective function (3.6), the constraints, (3.7) and
(3.8), and an appropriate value of cwhich determines
the level of stability of the variance estimator.

Note that since the second-order inclusion
probabilities are expressed as the sum of the selection
probabilities, as in (2.3), we can obtain the selection
probability of each sample, p(s), from the equations
of those second-order inclusion probabilities.

(2) Approaches |1 and 111

One of the purposes of the Approach | is to
minimize the estimated variance, not necessarily the
variance of the H-T estimator. But it is directly
related to the minimization of the variance because
the Sen-Y ates-Grundy variance estimator (2.7), is an
unbiased estimator of the variance of the H-T
estimator (2.8) and the relation is expressed as

E[@ SYG (?HT )i| = ;[\Za\r sG (QHT )] p(s)

=Varg, (QHT ) . (3.9

So the NLP approach to minimize the variance of
the H-T estimator can also result in minimizing the
estimated variances of samples selected under the
design solution.
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The two NLP approaches to minimize the
variance have been developed by Kim, Heeringa and
Solenberger (2003) (See pages 2169-2170 for the
details), but the previous methods did not guarantee
the non-negativity and stability of the variance
estimator. However, to achieve non-negativity and
stahility it is only necessary to add the bounded
constraints (3.7) and the IPPS constraints (3.8) to
each of the following objective functions proposed by
them.

2

MinimizeZN:ZN:(JTJTj - 7;{) (3.10)
Mr:xximizezN:zN:nij (3.11)

i=1 j>i

Accordingly, under the same constraints as in the
Approach | we can find the solution to (3.10) or
(3.11). Here we call those NLP Approaches Il and 111,
respectively.

The bounded constraints (3.7) can be expressed as

c<g <1, j>i=10N , (3.12)

T

where J, = ——.
i

Given this, obtaining a sampling design that

achieves MINMAX o; , which indicates the

maximum among the minimum g, s from the
possible NLP solutions for each approach, may be
preferable since it results in better stability for the
variance estimator.

A variety of NLP software is available for
implementing the three approaches. We use
SAS/OR® software, specifically the NLP Procedure
to optimize those objective functions under the
certain congtraints. Refer to SAS/OR® (2001) for the
details.

The choice of an appropriate value of c that
yields a set of the second-order inclusion

probabilities achieving MINMAX ¢, is not difficult.

By repeating the steps as in the Approach | and
applying some reasonable rules we can easily find the
maximum value of c that till permits a solution to
the NLP problem.

4. Strict Constraintsfor NLP approaches
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PPS sampling with replacement or Murthy
(1957)'s method or Brewer (1963)'s method are
established sample selection methods. These methods
have been widely used in many datistical
organizations and by alot of survey samplers.

The flexibility in the use of the value of ¢ in the
bounded constraints (3.7) in our NLP approaches is
important since we can determine the value of the
congtraints that always yield the smaller variance
estimator compared to those popular methods. We
present those constraints as follows. Here the sample
Sizeisrestrictedto n=2.

Since 77 =2p, , the Sen-Yates-Grundy variance

estimator (2.7) can be written

2
\Ersye(?HT)= %—E L—L )
T 40N p P

ij
j>i=LON (4.1)

For PPS sampling with replacement, the variance
estimator is

(4.2)

where ?PPS =%[£+ﬁJ, j>i=100N
i i

The variance estimator for Murthy (1957)'s
method is given by

VQWM%JPﬁMPmJQ-Q—m)X_ﬂ_Z

2-p-p) PP

(4.3)

where Y =;{(1—pj)£+(l—p,)ﬁ} ,
2-p -p, z Z,

j >i =1 [N . Refer to Cochran (1977), page 264.

By comparison of (4.1) and (4.2), for all samples
clearly

V/;arsve (?HT ) < \7& (?PPS) (4.9
when
CEIDES s
T 4 4

ij

An aternative form of (4.5) can be given by
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Cops 175 < 7, (4.6)

where ¢, =0.5.

Hence when we use ¢=0.5 in the bounded
constraints (3.7) in our NLP approaches, it is
expected that we can aways obtain the smaller
variance estimator than in PPS sampling with
replacement.

Similarly, from (4.1) and (4.3), we see that if

P p; 1<@-ma-Qan-m)

-= , (47
7T 4 (2- p - pj )2
then
Var s (?HT) < Var (?M ) . (4.8)
Since (4.7) can be expressed as
Cim BT < 77, (4.9
where ¢, ,, =
o ij.M +1
41-p)A-p)A-p —-p
L Ameap)-nce)
(2- P - pj)
using the non-constantc; = , ] >1=10IN

pij,M
in the NLP approaches, which is not a constant, can
always yield the smaller variance estimator than in
Murthy’ s method.

Considering p;, <1for dl i, j in (4.10), the
following relation is easily derived.

Ceps < Cjm (4.11)

Thus the use of ¢, gives more strict constraints
than in theuse of ¢, =0.5.

On the other hand, Brewer’s method is an 1PPS
sampling scheme like our NLP approaches, and (2.7)
is used as the formula of the variance estimator. To
provide the smaller variance estimator than in
Brewer’s method, we need to use the constraints

Co < T, (4.12)
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1 1 1
where Gig=—= + and
© 4D(1-2p 1-2p,
N —
-3 PP
=1 —2p|

Since ¢,  is not aways larger than 0.5, we cannot
say that ¢; , aways yields stricter constraints than

Ceps = 0.5.

We have derived these dtrict constraints to
illustrate what is required for our NLP approaches to
yield smaller variance estimates than in the well-
known three methods. Successful NLP solutions that
apply constraints that match or exceed the values of
Cpps O C; OF Gy Can achieve the smaller
variance estimates as well as greater stability of the
variance estimator. But note that whether or not the
solutions of the NLP approaches exist subject to the
strict constraints may depend on the sampling design
problem, that is, the size measures of the units in the
population.

5. An lllustration

We have chosen a numerical example given by
Y ates and Grundy (1953) to examine the results from
the suggested NLP approaches with respect to the
desirable properties for the Sen-Yates-Grundy
variance estimator as well as the reductions in the
variance of H-T estimator. Table 5.1 presents the
three artificial populations of N =4 showing the
relative size of each unit, p. and the value of the
characteristic of each unit, y,. A sample of size

n=2is selected from each population. Note that
when n=2, 7z, = p(s) . The correlation coefficients

between the size measure p and the value of the
characteristic 'y, for the three populations are
respectively: 0.995, 0.976, 0.876.

Table5.1 Three Populationsof N =4

increased by 0.100 from ¢=0.000 to ¢ =0.400 are
shown in Table 5.2, Table 53 and Table 5.4,
respectively. Note that the results for Approach | are
identical for ¢=0.100 to ¢=0.400 and those in
Approach Il are same when ¢ =0.000 and ¢ =0.100.
The 77, s from the three NLP approaches are very

different from each other, yielding different J; s,

except for ¢ =0.400 in Approaches Il and IlI. But
the pairs of units having minimum ; are same for

Approaches |l and I11.

Table5.2 77, and J; from Approach |

Unit i 1 2 3 4
Relative Size B 0.1 0.2 0.3 04
Population A Yi: 0.5 12 21 3.2
Population B Yi: 0.8 14 18 2.0
Population C Y- 0.2 0.6 0.9 0.8

The 77; and the J; obtained from Approach I,

ij

Approach |l and Approach Il as the value of ¢ is

c
0.000 0.100 0.200 0.300 0.400
Tk 0.0000 0.0451 0.0451 0.0451 0.0451
(5,) (0.0000*) (0.5638)  (0.5638)  (0.5638)  (0.5638)
Tt 0.0742 0.0570 0.0570 0.0570 0.0570
(5,) (06181) (04752) (04752)  (04752)  (0.4752)
Thy 0.1258 0.0979 0.0979 0.0979 0.0979
(5,) (07864) (06117) (0.6117)  (06117)  (0.6117)
Ths 0.1258 0.0979 0.0979 0.0979 0.0979
(5,) (05243) (04078*) (04078*) (0.4078*) (0.4078*)
Tl 0.2742 0.2570 0.2570 0.2570 0.2570
(5,) (08568) (0.8032) (0.8032)  (0.8032)  (0.8032)
Ty 0.4000 0.4451 0.4451 0.4451 0.4451
(5,) (08333) (09273) (09273)  (0.9273)  (0.9273)
Note. « : minimum g
Table5.3 77, and J; from Approach I1
C
0.000 0.100 0.200 0.300 0.400
7k 0.0133 0.0133 0.0160 0.0240 0.0320
(5,) (01667*) (0.1667*) (0.2000*) (0.3000*)  (0.4000%)
Tt 0.0533 0.0533 0.0520 0.0480 0.0480
(5,) (04444)  (04444)  (04333)  (0.4000)  (0.4000%)
Tha 0.1333 0.1333 0.1320 0.1280 0.1200
(5,) (08333 (0.8333) (0.8250)  (0.8000)  (0.7500)
Tl 0.1333 0.1333 0.1320 0.1280 0.1200
(5,) (05556) (0.5556)  (0.5500)  (0.5333)  (0.5000)
Tl 0.2533 0.2533 0.2520 0.2480 0.2480
(5,) (07917) (07917) (07875  (0.7750)  (0.7750)
Thy 0.4133 0.4133 0.4160 0.4240 0.4320
(5,) (08611) (08611  (0.8667)  (0.8833)  (0.9000)

Note. « : minimum
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Table5.4 7z, and J; from Approach I

c
0.000 0.100 0.200 0.300 0.400
Tty 00000 00080 00160 00240  0.0320
(5,) (0.00007) (0.1000*) (0.2000*) (0.3000*) ~(0.4000%)
Tty 00500 00515 00480 00445  0.0480
(s5,) (04167) (04292) (0.4000)  (03708)  (0.4000%)
T, 04500 01405 01360 01315  0.1200
(s5,) (09375 (08781) (0.8500)  (0.8219)  (0.7500)
T 01500 01405 01360 01315  0.1200
(s5,) (06250) (0.5854) (0.5667)  (0.5479)  (0.5000)
T 02500 02515 02480 02445  0.2480
(s5,) (07813) (0.7859) (0.7750) (0.7641)  (0.7750)
Tty 04000 04080 04160 04240  0.4320
(s5,) (08333) (0.8500) (0.8667)  (0.8833)  (0.9000)

Note. « : minimum 6”.

As described in the section 3, since we may prefer
a sampling design giving MINMAX ¢, in the sense
that it would provide the more stable variance
estimator, the maximum of available values of ¢
should be used. For this problem, ¢ =0.454 is the
largest value that still yields a NLP solution. Table
5.5 shows the solutions of the three approaches when
c=0.454 is applied. Although it seems that those
from Approach | and Approaches Il and IIl are
different each other, especialy for the MINMAX 9, ,

the solutions are nearly identical.

Table5.5 77, and J; from Three Approaches When

Using c=0.454
Al All Alll

7L, 0.0365 0.0363 0.0363
(3,) (0.4563) (0.4538**) (0.4538**)

Ths 0.0545 0.0545 0.0545
(3,) (0.4542%*) (0.4542) (0.4542)

by 0.1090 0.1092 0.1092
(3,) (0.6813) (0.6825) (0.6825)

s 0.1090 0.1092 0.1092
(3,) (0.4542+*) (0.4550) (0.4550)

b4 0.2545 0.2545 0.2545
(3,) (0.7953) (0.7953) (0.7953)

Ty 0.4365 0.4363 0.4363
(a,) (0.9094) (0.9090) (0.9090)

Note. Al: Approach |, All: Approach I, Alll: Approach |11
=t MINMAX ¢,
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We do not deal here with the application of the
strict constraints that always provide the smaller
variance estimator than in PPS sampling with
replacement, Murthy’s method and Brewer’s method
because in this case the maximum of ¢=0.454 is
less than ¢, =0.5in (4.6). So without using those
constraints we compare our suggested approaches to
those three methods.

Table 5.6 shows a comparison of the 7z, and the
g, of five IPPS sampling schemes, that is, Jessen’s
two methods, the two sampling plans from Nigam et
al.’s method and Brewer’s method. The results in the
methods are quite different from those in Table 5.5.
And since each minimum J; for these comparative
methods is smaller than in Approaches I, 1 and I,
the NLP approaches are expected to yield the more
stable variance estimator. Note that Jessen’s Method
2 even provides zero 77; and the non-negativity of

variance estimator is not guaranteed because some
valuesof J; arelarger than one.

Table5.6 77, and J; from Five Selected Methods

J2 J3 N2 N3 B
7r, 02000 00666 00500 00400  0.0277
(s5,) (250000 (08325 (0.6250)  (05000) (0.3465*)
Ths 00000 00667 00500 00600  0.0535
(5,) (0.0000") (05558) (0.4167*) (0.5000)  (0.4455)
Tha 00000 00667 01000 01000  0.1188
(5,) (00000*) (0.4169) (0.6250)  (0.6250)  (0.7426)
Tty 00000 00666 01000 01000  0.1188
(5,) (00000*) (02775%) (04167%) (0.4167*)  (0.4950)
Tty 02000 02667 02500 02600  0.2535
(5,) (06250) (0.8334) (0.7813)  (0.8125)  (0.7921)
Tty 06000 04667 04500 04400  0.4277
(5,) (12500) (0.9723) (0.9375)  (0.9167)  (0.8911)

Note. J2: Jessen (1969)’ s method 2
J3: Jessen (1969)’ s method 3
N2:Nigam et a. (1984)’s method
(the second sampling plan)
N3:Nigam et al. (1984)’s method
(the third sampling plan)
B: Brewer (1963)’s method
« - minimum 6”.

The results for schemes J2, J3, N2 and N3 are from Jessen
(1969), page 183 and Nigam et al. (1984), page 567,

respectively.
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In Table 5.7 we compare the stabilities using the
following formula of coefficient of variation (CV) of
variance estimators based on the 7z; in Table 5.5 and

5.6:

cv (Var (¥)) = Var [Var (%) | / E[Var (V)]

= \/E[\@ (\?)]2 —[Var (\A()T/Var )
(4.1)

We added the two PPS sampling schemes of PPS
sampling with replacement and Murthy’s method in
the table to compare with | PPS sampling methods.

that a change of the objective function by a change of

the value of c yields a change in the 7z, , and the

increase (decrease) of the variance Var (\?) in (4.1) by
a change of the 7z, results in the decrease (increase)

of the CV in (4.1). Note that the objective function is
an increasing function of the value of ¢

Table 5.8 presents a comparison of variances used
in the calculation of the CV of the variance estimator
in Table 5.7. Brewer's method is the best. The NLP
approaches are more efficient than Murthy’s method
and Nigam et a.’s method. The PPS sampling is the
worst.

Table 5.8 Comparison of Variances

Var (Y)
Table 5.7 Comparison of Stabilities of Estimated Pop.
Variances PPS Al All - Alll 33 N3 B
CV(\7a\r(\?)) A | 0500 0300 0300 0300 0367 0310 0282 0312
Pop.
PPS Al All Al B N3 B M 0500 0300 0300 0300 0367 0310 0282 0312
A | 1600 1244 1242 1242 2127 1349 1160 1015 C | 0125 0055 0055 0055 0033 0050 0059 0.070
1600 1244 1242 1242 2127 1349 1160 1015 Ave | 0375 0218 0218 0218 0256 0223 0208 0232
Rel.
C | 1000 1481 1483 1483 1473 1392 1623 0.713 £t 100 172 172 172 146 168 180
Ave. | 1400 1323 1322 1322 1909 1363 1314 0914 Note. Rel. Eff.: Relative Efficiency
Rdl Seethenotesin Table 5.5, Table 5.6 and Table 5.7 for
Sta' 100 106 106 106 73 103 107 153 the others.
Note. PPS: probability proportional to size sampling with
Replacement

M: Murthy (1957)' s method
Ave.: Average of the CV for the three populations
Rel. Sta.: Relative Stahility

Seethe notesin Table 5.5 and 5.6 for the others.

When comparing the relative stability, Murthy’s
method is best, while Jessen’'s Method 3 is
considerably less efficient. Our NLP approaches and
Brewer's method are almost similar and better than
Nigam et a.’s method and PPS sampling method.

We have not shown the CV in terms of ¢ =0.000
to ¢ =0.400 in NLP approaches. Some of them yield
better stability of variance estimators than when
c=0.454, but we may prefer using the maximum
(c=0.454) because we would be mainly interested
in the reduction of the variation for the non-squared
factor in (2.7) at the beginning of sample design.

Also, there may exist a tradeoff between the CV
of variance estimator and variance of the H-T
estimator in NLP approaches. It comes from the fact
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In summary, the NLP approaches exactly achieve
the non-negativity of the Sen-Y ates-Grundy variance
estimator and the sampling design having
MINMAX g, would provide the more stable variance

estimator. As shown above, with respect to the
stability of the variance estimator as well as the
variance of the estimator they are better than Jessen’s
methods, Nigam et al.’s method and PPS sampling
with replacement and comparable with Brewer's
method and Murthy’ s method.

6. Conclusion

We have suggested three NLP approaches. They
surely achieve the desirable properties such as non-
negativity and stability in variance estimation. They
are very flexible for n=2 as well as n>2 and can
be easily implemented by using some publicly
available software including SAS/OR.

There may be a tradeoff between the stability of
the variance estimator and variance of the estimator if
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we would like to use the higher value of ‘¢’ in the
bounded constraints. But the variance for a sampling
design having MINMAX J; may be lower than in

probability proportional to size sampling with
replacement.

Developing a software application based on the
suggested NLP approaches and SAS/OR NLP
procedure and checking the efficiencies of some NLP
algorithms provided in SAS/OR are highly
recommended.

In future research, we will draw empirica
comparisons to examine the tradeoff between the
variance estimator and variance of the estimator for
samples of different size and populations.
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