Probability Sampling Scheme for Variance Minimization

Sun-Woong Kim Steven G. Heeringa Peter W. Solenberger

Dongguk University & Survey Research Center University of Michigan

Overview

- **4** Some Probability Sampling Schemes
- **4** Horvitz-Thompson Estimator
- Jessen's Method 4
- Non-linear Programming (NLP) Approaches
- **4** Implementation of the Alternatives
- **4** Numerical Examples
- Discussion

4 Some Probability Sampling Schemes

Sampling without replacement

Simple Random Sampling Yates and Grundy Method (1953) Raj's Method (1956) Murthy's Method (1957) Hartley and Rao Method (1962) Brewer's Method (1963)

Sampling with replacement

Probability proportional to size sampling

Rao, Hartley and Cochran Method (1962)

Horvitz-Thompson (1952) Estimator

Notation

Selecting a sample of n out of the N units, without replacement, by some method

P(S) : selection probability of a sample S

 π_i : probability that the *i*th unit is in the sample *S* or

 $\sum P(s)$ over all samples containing the *i*th unit

 π_{ij} : probability that the *i*th and *j*th units are in the sample *S*

or

 $\sum P(s)$ over all samples containing the *i*th and *j*th units

H-T estimator of the population total *Y* :

$$\widehat{Y}_{HT} = \sum_{i=1}^{n} \frac{y_i}{\pi_i}$$

where y_i is the characteristic of interest on the i unit

Several equivalent forms for the variance of H-T estimator, $Var(\hat{Y}_{HT})$:

•
$$\sum_{i=1}^{N} \frac{y_i^2}{\pi_i} + 2 \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{\pi_{ij}}{\pi_i \pi_j} y_i y_j - Y^2$$

•
$$\sum_{i=1}^{N} \frac{(1 - \pi_i)}{\pi_i} y_i^2 + 2 \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{(\pi_{ij} - \pi_i \pi_j)}{\pi_i \pi_j} y_i y_j$$

•
$$\sum_{i=1}^{N} \sum_{j>i}^{N} (\pi_{ij} - \pi_i \pi_j) \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2$$

Jessen (1969)'s Method 4

Examined the influence of π_{ij} on the following:

$$Var(\hat{Y}_{HT}) = \sum_{i=1}^{N} \sum_{j>i}^{N} (\pi_{ij} - \pi_i \pi_j) \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2$$
$$= \sum_{i=1}^{N} \sum_{j>i}^{N} W_{ij} \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2$$

where $\pi_i = nP_i$, the P_i is the relative size of the *i*th unit, $W_{ij} = \pi_{ij} - \pi_i \pi_j$

Considering the situation where the weight W_{ij} is a constant $\overline{W} = \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{W_{ij}}{(N(N-1)/2)}$ with n = 2 **The desired** π_{ij} for selecting samples of n = 2

$$\pi_{ij} \doteq \pi_i \pi_j - \overline{W}$$

High statistical efficiency shown through several examples from the literature

Some disadvantages of Method 4

- ✓ Difficult to employ in practical problems due to the arbitrariness and complexities of trials to meet the requirement that $\pi_i = nP_i$
- Repeated to find the exact variance of estimates
- \checkmark Limited to samples of size n = 2

Non-linear Programming (NLP) Approaches

Alternative I

Designates a set of π_{ij} such that the following is minimized :

$$\sum_{i=1}^{N}\sum_{j>i}^{N}\left(W_{ij}-\overline{W}\right)^{2} = \sum_{i=1}^{N}\sum_{j>i}^{N}\left(\left(\pi_{i}\pi_{j}-\pi_{ij}\right)-\overline{W}\right)^{2}$$

which is equivalent to minimizing

$$\sum_{i=1}^{N} \sum_{j>i}^{N} (\pi_{i}\pi_{j} - \pi_{ij})^{2} = \sum_{i=1}^{N} \sum_{j>i}^{N} (n^{2}P_{i}P_{j} - \pi_{ij})^{2}$$

subject to

$$\sum_{i \in s, s \in S^*} P(s) = \pi_i, i = 1, \cdots, N$$

where S^* is a set of all possible samples

Alternative II

Finds a set of π_{ij} such that the following is directly minimized :

$$\sum_{i=1}^{N} \sum_{j>i}^{N} (\pi_{i}\pi_{j} - \pi_{ij}) = \sum_{i=1}^{N} \sum_{j>i}^{N} (n^{2}P_{i}P_{j} - \pi_{ij})$$

which amounts to maximizing

under the same constraints as Alternative I

H Implementation of the Alternatives

- Using SAS/OR NLP Procedure to optimize non-linear or linear objective functions under linear constraints
- Available several different non-linear programming algorithms by some options in finding a solution
- Not restricted to the sample of size n = 2
- Needed calculation of the selection probability of each sample

With Second Examples

Table 1. Yates and Grundy (1953)

Unit	<i>i</i> :	1	2	3	4
Relative Sizes	P_i :	0.1	0.2	0.3	0.4
Population A	<i>y</i> _{<i>i</i>} :	0.5	1.2	2.1	3.2
	y_i/P_i	5	6	7	8
Population B	y_i :	0.8	1.4	1.8	2.0
	y_i/P_i	8	7	6	5
Population C	<i>y</i> _{<i>i</i>} :	0.2	0.6	0.9	0.8
	y_i/P_i	2	3	3	2

Three artificial populations with N = 4, n = 2

Table 2. Yates and Grundy (1953)

Units (<i>i</i> , <i>j</i>)	$\pi_{_{ij}}$						
	Jessen Method 4	Alternative I	Alternative II				
1, 2	0.010	0.013	0.000				
1, 3	0.050	0.053	0.050				
1, 4	0.140	0.133	0.150				
2, 3	0.140	0.133	0.150				
2, 4	0.250	0.253	0.250				
3, 4	0.410	0.413	0.400				

Second inclusion probabilities over all units

Table 3. Yates and Grundy (1953)

Comparison of variances of Alternative I and Alternative II with other schemes

Population	$Var(\hat{Y})$								
	PPS	R	J 4	ΑI	A II	Y-G	H-R		
Α	0.500	0.200	0.245	0.253	0.225	0.323	0.367		
В	0.500	0.200	0.245	0.253	0.225	0.269	0.367		
С	0.125	0.100	0.070	0.067	0.075	0.057	0.033		
Average	0.375	0.167	0.187	0.191	0.175	0.216	0.256		
Rel. Eff.	100	225	201	196	214	173	147		

PPS: Sampling with probability proportional to size

- **R** : Raj's method
- J4 : Jessen's method 4

A 1 : Alternative I

A II: Alternative II

Y-G: Yates and Grundy method

H-R: Hartley and Rao method

Table 4. Cochran (1977)

Unit	<i>i</i> :	1	2	3	4	5
Relative Sizes	P_i :	0.1	0.1	0.2	0.3	0.3
Population A	y_i :	0.3	0.5	0.8	0.9	1.5
	y_i/P_i	3	5	4	3	5
Population B	y_i :	0.3	0.3	0.8	1.5	1.5
	y_i/P_i	3	3	4	5	5
Population C	y_i :	0.7	0.6	0.4	0.9	0.6
	y_i/P_i	7	6	2	3	2

Three artificial populations with N = 5, n = 2

Table 5. Cochran (1977)

Comparison of variances of Alternative I and Alternative II with other schemes

Population	$Var(\hat{Y})$								
	SRS	PPS	В	ΑI	A II	Μ	RHC		
Α	1.575	0.400	0.246	0.247	0.278	0.267	0.320		
В	2.715	0.320	0.248	0.247	0.184	0.237	0.256		
С	0.248	1.480	1.251	1.290	1.160	1.130	1.184		
Average	1.513	0.733	0.582	0.594	0.541	0.545	0.587		
Rel. Eff.	100	206	260	254	280	278	258		

SRS : Simple random sampling

PPS : Sampling with probability proportional to size

B : Brewer's method

A 1 : Alternative I

A II : Alternative II

M : Murthy's method

RHC: Rao, Hartley and Cochran method

- Alternative II preferable to Alternative I and other methods with respect to statistical efficiency and conveniences to carry out
- Both alternatives favored in the stratified multistage cluster sampling design, where two clusters are drawn from each stratum
- followed empirical comparisons for $n \ge 2$ in different populations
- Needed the examinations of stabilities and non-negativeness of the variance estimators such as Yates-Grundy form