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1. Introduction 

A number of techniques for probability sampling 
without replacement (SWOR) have been suggested, 
although it is not clear which method is consistently 
superior in terms of statistical efficiency.  Rao and 
Bayless (1969) empirically studied the stability of 
estimators of the population total for a variety of   
methods of unequal probability SWOR when 
selecting two units per stratum. One of their major 
conclusions is that when a stable estimator is 
required, Murthy’s (1957) method is preferred over 
the methods of Lahiri (1951), Raj (1956), Rao, 
Hartley and Cochran (1962), Brewer (1963), Fellegi 
(1963), Hanurav (1967), and probability proportional 
to size (PPS) sampling with replacement.  

One the other hand, Jessen (1969) proposed four 
interesting sampling schemes. One of them, labeled 
method 4, shows high efficiency in comparisons of 
variances of estimators relative to those of alternative 
SWOR selection schemes, including some of the 
above-mentioned methods.  

However, Jessen’s method may be difficult to 
employ in practical problems due to the arbitrariness 
and complexities of trials to determine the inclusion 
probabilities that are required for the variance 
formula for the estimator of the total population.  

In this paper, we first review Jessen’s method. 
Second, we suggest two probability sampling 
schemes using non-linear programming approaches 
to overcome certain disadvantages in carrying out 
Jessen’s method. Finally, we illustrate the practicality 
and statistical efficiency of our methods through 
application to several examples from the literature. 
 
2. Review of Jessen’s method 
 

Assume that the sampler has auxiliary 
information, that we will label the absolute measure 
of size, for each unit in a finite population consisting 
of N  units. Let iX , 1, ,i N= ⋅ ⋅ ⋅ denote the absolute 

size measure of unit i . The relative measure of size 
for unit i , iP  is defined by 
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Then iπ , which is called the first-order inclusion 
probability, is expressed as  
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where S  is a set of all possible samples and ( )P s  

denotes the selection probability of a sample, s , of 
n  specified units in the population. 

The second-order inclusion probability, ijπ  for   

the i th and j th units, j i≠  is defined as    
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Horvitz and Thompson (1952) proposed the   
following unbiased estimator of the population total 
and its variance,  
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where iY  is the characteristic of interest for the i th 

unit, and 
1

N

i
i

Y Y
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=∑ . � HTY  is commonly referred to  as 

the Horvitz-Thompson estimator. 
Equation (2.5) may be expressed in the alternate 

form 
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which was first derived by Yates and Grundy (1953).  

Jessen (1969) examined the influence of the 
second-order inclusion probability, ijπ  on the 

variance of Horvitz-Thompson estimator represented   
in (2.6). His method is described as follows. 

Let  

ij i j ijW π π π= − .                           (2.7)  

Then (2.8) below is derived using (2.7) 
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Since the number of all possible samples is 

( )!/ 2!( 2)!N N − , the average of all ijW s can be 

expressed as: 
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Then Equation (2.6) can be written in another 
form 
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However, using Equation (2.10) is almost 
impossible in practice because in real sampling 
problems the iX s are typically unequal, though 

ijW W= is one hypothetical possibility. 

Jessen proposed the method using ijW W�  

instead of ijW W= when selecting samples of   

size 2n = . His method consists of the following 
steps. 

 

Step1. Calculate the iπ s and W  by using the 
absolute size measure of each unit in a finite 
population.  

Step2. Compute *
ijπ s, regarded as the first 

approximation to the desired ijπ s that minimizes 

Equation (2.6), where 
*
ij i j Wπ π π= − .                      (2.11) 

Step3. Check if *
ijπ  do meet the following 

requirement for all ,i j . 
*
ij kπ π=∑ , , , 1, ,i j k N= ⋅ ⋅ ⋅ , j i> ,   (2.12)     

where the sum is over all ijπ s containing the 

subscript k  for either i  or j . 
 

Step4.  If there is significant discrepancy, the final 
second-order inclusion probabilities are determined 
by using the ( 1)N N− × tableau (See Jessen (1969, 
Table 3.2)) so that the following approximation holds 
instead of Equation (2.12).  

 
  *

ij kπ π∑ � , 1, ,k N= ⋅ ⋅ ⋅                (2.13) 

With respect to the variance of the estimator of   
the population total, Jessen empirically compared his 
three methods, that is, methods 3 and 4 and the 

method using W  to alternatives including PPS 
sampling with replacement and the methods of Raj 
(1956), Yates and Grundy (1953), Hartley and Rao 
(1962), Narain (1951), Cochran (1963), Rao, Hartley 
and Cochran (1962), and Horvitz and Thompson 
(1952). In the results of comparisons using the two 
examples from Yates and Grundy (1953) and 
Cochran (1963), the Raj and Narain methods perform 
best. Jessen’s method 4 has the second highest 
average efficiency for three populations in each 
example. The paper points out that the example 
problems vary widely in terms of the variances of the 
population totals of interest and it may be beneficial 
to favor a method that is robust, one that is least 
sensitive to population characteristics. Furthermore, 
Jessen points out that among the ten alternatives 
tested Raj’s and Narain’s methods are perhaps the 
most difficult to apply in practical settings. 

Considering these results and Jessen’s argument 
for the desirability of a robust estimator Jessen’s 
method might be preferred over the alternatives 
included in that study. 

However, there are some disadvantages in using 
Jessen’s method. First of all, it is difficult to employ 
in practical problems due to the arbitrariness of the 
trials to satisfy the requirement specified in Equation 
(2.13) which requires finding the final second-order 
inclusion probabilities using the ( 1)N N− ×  tableau 
in the Step 4. In addition, Jessen’s method is limited 
to samples of size 2n = . 

In the next section we propose new non-linear 
programming approaches to avoid these problems 
and describe how to implement them.  
 
3. Non-linear programming approaches 
 

A non-linear programming (NLP) problem is 
specified as  

     minimize ( )f x                                          (3.1) 

     subject to ( ) 0ig x ≥  for all 1, ,i l= ⋅⋅ ⋅ ,     (3.2) 

                      ( ) 0ih x =  for all 1, ,i m= ⋅⋅⋅ ,    (3.3) 

where x is a vector of t  components 1 2, , , tx x x⋅ ⋅ ⋅ , the 

function f  is called the objective function. The 

expressions, ( ) 0ig x ≥  and ( ) 0ih x =  are called the 

inequality constraint and the equality constraint 
respectively. 

The solution to a NLP requires finding a feasible 

point *x such that *( ) ( )f x f x≥  for each feasible 

point x . The feasible point is called the optimal 
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solution to the problem. The maximization of a NLP 
problem can be also considered. When the objective 
function and all constraints are linear, the problem, 
which is the special case of a NLP problem, is called 
a linear programming (LP) problem.  

 We may consider the following NLP approach 
which is quite straightforward since Jessen’s method 

finds *
ijπ s roughly satisfying (2.13) and ijW W� . 

Designate a set of ijπ  such that the following 

objective function is minimized:  
 

   ( ) ( )( )
N N N N

ij i j ij
i j i i j i

W W Wπ π π
2 2
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− = − −∑∑ ∑∑ , (3.4) 

 
subject to the inequality constraint, 

              0ijπ ≥ , 1, ,j i N> = ⋅⋅⋅ ,                    (3.5) 

and the equality constraint, 

   ( )
N

ij i
j i

nπ π1
≠

= −∑ , 1, ,i N= ⋅⋅⋅ .          (3.6) 

The components 1 2, , , nx x x⋅ ⋅ ⋅  in the general NLP 
problem specification are the second-order inclusion 
probabilities, ijπ s, and (3.1), (3.2) and (3.3) 

correspond to (3.4), (3.5) and (3.6) respectively.                  
 

Note that since W  is a constant, minimization of 
(3.4) is equivalent to minimizing  
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(3.7) is also equivalent to 

                   ( )
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due to the fixed values iπ and  jπ . 

By using the NLP approach that consists of (3.4) 
or (3.7) or (3.8) as a nonlinear objective function and 
the linear constraints of (3.5) and (3.6), we can 
achieve optimal control over the second-order 
inclusion probabilities ijπ  for reducing the variance 

of Horvitz-Thompson estimator of Equation (2.6) 
without the repeated trials of Jessen’s method. But 
the optimization does not mean that the NLP 
approach solution always yields smaller variances 
than Jessen’s method. However, the proposed NLP 
approach does present the exact solution to minimize 
the objective function under the constraints. We will 
refer to this NLP method as alternative I. 

While alternative I is an effective alternative to 
Jessen’s method, we also consider a second, more 
direct approach (alternative II).  

From (3.4) we can introduce the objective 
function 
 

               
N N N N N N

ij i j ij
i j i i j i i j i

W π π π
1 1 1= > = > = >

= −∑∑ ∑∑ ∑∑  .     (3.9) 

Since the first term on the right-hand is a fixed value, 
minimization of (3.9) amounts to maximization of  
 

                
N N

ij
i j i

π
1= >
∑∑ .                               (3.10) 

 

Thus the simpler function, which is a linear form   
having equal weight for each second-order inclusion 
probability, can be used as the objective function 
instead of  (3.4) under the same constraints as the 
alternative I NLP specification. In this case where all 
possible second-order inclusion probabilities are 
enumerated in (3.10), the NLP algorithm is not 
maximizing individual ijπ s but simply finding 

solutions meeting the constraints. Note that the 
objective function (3.10) is now indicated by 

, , ,

( ) ( ) ( )
N N N

i j i s S i j s i s S i s

P s n P s
1 1

1
1

2= > ∈ ∈ = ∈ ∈
= −∑∑ ∑ ∑ ∑  

( ) ( )
s S

n n P s
1

1
2 ∈

= − ∑           (3.11) 

and in this function the selection probabilities of 
individual samples have the equal weight of 

( )n n1 2 1− . 
In order to implement our alternatives I and II, we 

use the SAS/OR NLP procedure in order to optimize 
non-linear or linear objective functions under the 
linear constraints. A variety of NLP algorithms are 
available and SAS/OR (2001) provides the capability 
details to choose an optimization algorithm.  

For alternative II, LP can also be used since both 
the objective function and the constraints are linear. 
Unlike Jessen’s method, the NLP approaches would 
not be restricted to the sample of size 2n = . When 
the sample size n  is two, most NLP algorithms will 
yield the same solutions.  

Since the second-order inclusion probabilities that 
are the solution set under the NLP approaches 
determine the ( )P s , as shown in Equation (2.3), we 
can obtain the selection probability for each sample 
by solving those equations for ( )P s . We can select a 

sample s with the specified ( )P s by using the well-
known method of cumulative sums.  

 
4. Numerical examples 
 

We have chosen several example problems from 
the literature to empirically evaluate the NLP 
approaches, the alternatives I and II, and compare 
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their performance to Jessen’s method. Table 4.1 
shows the first example from Yates and Grundy 
(1953). There are three artificial populations each   
consisting of 4N =  units. The value of the variable 

of interest, iY , and the relative size of each unit, Pi, 

are given. Note that ranges of i iY P  for the three 
example populations are not extreme. Two units from 
each population are selected as a sample s .  
 

Table 4.1 Description of Three Populations  
Unit  i  : 1 2 3 4 

Relative Size iP : 0.1 0.2 0.3 0.4 

iY : 0.5 1.2 2.1 3.2 Population A  

i iY P : 5 6 7 8 

iY : 0.8 1.4 1.8 2.0 Population B  

i iY P : 8 7 6 5 

iY : 0.2 0.6 0.9 0.8 Population C  

i iY P : 2 3 3 2 

 
Prior to empirical evaluations for the new 

sampling schemes and other selected schemes, we 
need to focus on a visible comparison between the 
solutions on the second-order inclusion probabilities 

ijπ s from the Jessen’s method and the alternatives I  

and II.  Table 4.2 presents the results obtained by 
using the three methods. The result for Jessen’s 
method is from Jessen (1969).   

 
Table 4.2 Solutions of Three Methods  

ijπ  Units 

( ,i j ) Jessen’s Method Alternative I Alternative II 

1, 2 0.010 0.013 0.000 

1, 3 0.050 0.053 0.050 

1, 4 0.140 0.133 0.150 

2, 3 0.140 0.133 0.150 

2, 4 0.250 0.253 0.250 

3, 4 0.410 0.413 0.400 

 
 
As described in the section 3, alternative I uses 

the NLP approach to get over the disadvantages such 
as the arbitrariness and complexities in implementing 
Jessen’s method. Thus we may expect that the 
solutions for the second-order inclusion probabilities 
from the two methods should be similar. This 
expectation is confirmed in Table 4.2 which shows 
very similar values for the two sets of the second-
order inclusion probabilities. Also, note that the  
solutions are very different from Jessen’s and the 
Alternative I solutions. 

A comparison for the variance of the population 
total of the two NLP alternatives with those of the 

Jessen’s method, Yates and Grundy (1953), Raj 
(1956), Hartley and Rao (1962) and PPS sampling 
with replacement is given in Table 4.3. The Yates 
and Grundy method uses an iterative procedure to 
decide a set of “adjusted measures of size” which 
approximately satisfy 

( 1)
N

ij i i
j i

n kXπ π
≠

= − =∑ ,                    (4.1) 

where k  is a proportional constant. 
 
The Raj’s method first adopts the assumption that 

i iY Xα β= +    ,                    (4.2) 

where there is no information on the actual values of 
α  and β . 

Then it obtains an optimal set of ijπ  minimizing 

the variance of the form (2.5) using linear 
programming methods. Hartley and Rao’s scheme 
arranges the units in a random order and then 
systematically selects a sample of n  using the 
“progressive sums of inP .” For sampling with 
probability proportional to size with replacement see 
the pages 252-253 of Cochran (1977). 

The variances in Table 4.3 are provided from Raj 
(1956) for Raj’s method and the Yates and Grundy 
method, Hartley and Rao (1962) for Hartley and Rao 
method and sampling with probability proportional to 
size with replacement and Jessen (1969) for Jessen’s 
method. The correlation between the size measure 

iX  and the characteristic of interest iY  for the three 
populations are respectively: 0.995, 0.976, 0.876. 
 
           Table 4.3 Comparison of Variances  

�( )Var Y  
Pop. 

PPS R J  AI AII YG HR 

A  0.500 0.200 0.245 0.253 0.225 0.323 0.367 

B  0.500 0.200 0.245 0.253 0.225 0.269 0.367 

C  0.125 0.100 0.070 0.067 0.075 0.057 0.033 

Average 0.375 0.167 0.187 0.191 0.175 0.216 0.256 

Rel. Eff. 100 225 201 196 214 173 147 

Note. PPS : Sampling with probability proportional to size with replacement                            

              R : Raj’s method 

            J : Jessen’s method (average over three trials) 

           AI : Alternative I 

          AII : Alternative II 

          YG : Yates and Grundy method 

          HR : Hartley and Rao method 
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To choose a preferred method, we consider two 
criteria: smaller average variances across problems 
(efficiency); low sensitivity of the method to 
population   characteristics (robustness). By these 
criteria, Raj’s method seems to be most preferable 
because it has the highest statistical efficiency. Note, 
however, that Raj’s method is unlikely to be efficient 
if the relation between iX  and iY  is not linear. Also, 
his method like the Jessen’s method is restricted to 
samples of size 2n = .  

Alternative II is clearly better than others except 
for Raj’s method. Jessen’s method and alternative I 
have a small difference for the variance owing to the 
similar solutions shown in Table 4.2.   

The second example is available from Cochran 
(1977). Table 4.4 shows three artificial populations 
that have five units and different characteristics of 
interest, as well as the different relative sizes for the 
units.  For reference the three populations have 
correlation between the variable of interest and the 
measure of size of 0.873, 0.997 and 0.275 
respectively. The sample size for this example is 

2n = . 
 

Table 4.4  Description of Three Populations  
Unit  i  : 1 2 3 4 5 

Rel. Size iP : 0.1 0.1 0.2 0.3 0.3 

iY : 0.3 0.5 0.8 0.9 1.5 Pop. A  

i iY P : 3 5 4 3 5 

iY : 0.3 0.3 0.8 1.5 1.5 Pop. B  

i iY P : 3 3 4 5 5 

iY : 0.7 0.6 0.4 0.9 0.6 Pop. C  

i iY P : 7 6 2 3 2 

 
 
 Table 4.5 describes a comparison of our NLP 

approaches to useful sampling schemes described by   
Brewer (1963), Murthy (1957) and Rao, Hartley and 
Cochran (1962), as well as to simple random 
sampling and PPS sampling with replacement.   

Brewer’s scheme, which is relevant only for 
2n = , draws the first unit with probability 

proportional to (1 ) (1 2 )i i iP P P− − , and selects the 

second unit with probability (1 )i jP P− , where j  is 

the first unit drawn. Murthy’s scheme draws the   
successive units with probabilities iP , (1 )j iP P− , 

(1 )k i jP P P− − , and so on. Rao, Hartley and 

Cochran’s method first divides the units in the 
population into n  random groups for a sample of size 
n  and selects one unit from each group.  

The variances for the other schemes except for 
alternatives I and II are from Cochran (1977). 

Table 4.5 Comparison of Variances  

�( )Var Y  
Pop. 

SRS PPS B AI AII M RHC 

A  1.575 0.400 0.246 0.247 0.278 0.267 0.320 

B  2.715 0.320 0.248 0.247 0.184 0.237 0.256 

C  0.248 1.480 1.251 1.290 1.160 1.130 1.184 

Average 1.513 0.733 0.582 0.594 0.541 0.545 0.587 

Rel. Eff. 100 206 260 254 280 278 258 

Note. SRS : Simple random sampling 

          PPS : Sampling with probability proportional to size with replacement                             

              B : Brewer’s method 

             AI : Alternative I 

            AII : Alternative II 

              M : Murthy’s method 

         RHC : Rao, Hartley and Cochran method 

 

 

As presented in Table 4.5, alternative II is most 
efficient followed by Murthy’s method and then 
Brewer’s method. Alternative I is less efficient, but it 
is much better than simple random sampling and 
sampling with probability proportional to size with 
replacement. Also, for these example problems there 
is only a small difference in efficiency between  
alternative I and the Rao, Hartley and Cochran 
method.  
 
5. Conclusion 
 

In this paper, we suggest two probability sampling 
schemes using NLP approaches. Alternative I avoids 
the practical problems encountered in Jessen’s 
method and provides the optimum solution for the 
second-order inclusion probabilities. Based on the 
tests described here, NLP alternative II appears to be 
preferred over alternative I and other sampling 
schemes with respect to both statistical efficiency and 
practicality of use. 

 Proposed sampling schemes would be useful in 
the stratified multistage cluster sampling design, 
where two clusters are drawn from each stratum. 

Some empirical comparisons will be followed for 
the cases in which the sample size is greater than two.  
In future research, we are going to examine the 
stability and the non-negativity of the Yates and 
Grundy (1953)’s variance estimator for the Horvitz-
Thompson estimator of population totals. 
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