Optimizing Solution Sets in Two-way Controlled Selection Problems

Sun-Woong Kim Steven G. Heeringa Peter W. Solenberger

Survey Research Center Institute for Social Research University of Michigan

Overview

- **4** Contributions to Controlled Selection
- **4** Two-way Controlled Selection Problem
- **4** Optimal Samples
- **4** Optimal Controlled Selection
- **4** New Public Use SAS-based Software
- **4** Examples
- **H** Further Studies

4Contributions to Controlled Sampling

Goodman and Kish(1950)

Introduction of controlled sampling techniques for deep stratification and other highly constrained sample selection problems

Jessen(1970)

Method 1, Method 2, Method 3 in two-way and three-way stratification

Hess, Riedel and Fitzpatrick(1975)

Controlled selection for the Michigan sample of general hospitals and patients

Causey, Cox and Ernst(1985)

Algorithm using transportation theory for two-way stratification

Rao and Nigam(1990, 1992)

Linear programming approach under certain probability sampling schemes

Sitter and Skinner(1994)

Linear programming approach using marginal constraints in two-way or three-way stratification

Huang and Lin(1998)

Algorithm using network approach in two-way Stratification

4 Two-way Controlled Selection Problem

Two-way stratification desirable in the sample design

Expected Sample Sizes($n = 10$)				
Regions -	Type of Community			
	Urban	Rural	Metropolitan	Total
1	1.0	0.5	0.5	2.0
2	0.2	0.3	0.5	1.0
3	0.2	0.6	1.2	2.0
4	0.6	1.8	0.6	3.0
5	1.0	0.8	0.2	2.0
Total	3.0	4.0	3.0	10.0

(Hypothetical Example) Bryant et al. (1960)

Notation

Row Stratification Factor : *R* categories Column Stratification Factor : *C* categories

 $R \times C$ Tabular Array : A

Expected Sample Sizes : a_{ij} , $i = 1, \dots, R$, $j = 1, \dots, C$

Possible Samples : B_k , $k = 1, \dots, L$ Internal Entry of B_k : $b_{ijk} = [a_{ij}]$ or $[a_{ij}] + 1$, where $[a_{ij}]$ is the integer part of a_{ij}

4 Optimal Samples

Constraints for selection probabilities of samples

$$E(b_{ijk}|i,j) = \sum_{i,j\in B_k,B_k\in B} b_{ijk} \quad p(B_k) = a_{ij},$$
$$\sum_{B_k\in B} p(B_k) = 1,$$

where \boldsymbol{B} : a set of possible samples, $p(\boldsymbol{B}_k)$: selection probability of \boldsymbol{B}_k .

There may be a number of sets of probability distributions satisfying these constraints.

Consider some measures of closeness between A and B_k .

Metrics (or Distance Functions) :

$$d_{1}(A:B_{k}) = \left[\sum_{i=1}^{R}\sum_{j=1}^{C}(a_{ij}-b_{ijk})^{2}\right]^{\frac{1}{2}}, k = 1, \cdots, L$$

: the overall distance between A and B_k for RC cells using the Euclidean metric

$$d_{2}(A:B_{k}) = \left[\sum_{i=1}^{R}\sum_{j=1}^{C}(a_{ij}-b_{ijk})^{2m}\right]^{\frac{1}{2m}}, k = 1, \dots, L$$

, $1 < m < \infty$

$$d_{3}(A:B_{k}) = \left[\sum_{i=1}^{R}\sum_{j=1}^{C} |a_{ij} - b_{ijk}|^{p}\right]^{\frac{1}{p}}, k = 1, \dots, L$$

, $1 \le p < \infty$

$$d_{4}(A:B_{k}) = \lim_{p \to \infty} d_{3}(A:B_{k})$$
$$= \max\{|a_{ij}-b_{ijk}|:1 \le i \le R, 1 \le j \le C\}$$
$$, k = 1, \cdots, L$$

: the simplest distance between A and B_k that is measured by only one cell among *RC* cells

Optimal Samples :

A few samples having the minimum distance values from d_4 (or d_1)

Unfavorable Samples :

A few samples having the maximum distance values from d_1 (or d_4)

Algorithm for Optimal Controlled Selection

PHASE 1. Find a set of possible samples satisfying the following internal and marginal constraints of the tabular array A:

$$|b_{ijk} - a_{ij}| < 1,$$

 $|b_{\cdot jk} - a_{\cdot j}| < 1,$
 $|b_{ik} - a_{i}| < 1.$

PHASE 2. Solve the following linear programming problem:

Determine $p(\mathbf{B}_k)$ that minimize

$$\phi_1 = \sum_{B_k \in B} d_1 (A : B_k) p(B_k)$$

or

$$\phi_2 = \sum_{B_k \in B} d_4 (A : B_k) p(B_k)$$

subject to

$$\sum_{ij \in B_k} p(B_k) = a_{ij}^*,$$

$$p(B_k) \ge 0,$$

$$\sum_{B_k \in B} p(B_k) = 1,$$
where a_{ij}^* is the non-integer part of a_{ij} .

PHASE 3. Choose randomly one sample which is a final sampling plan by using the method of cumulative sums or Lahiri(1951)'s method.

H Implementation of the Algorithm

New public use SAS-based software

Adapting two-phase revised simplex method to solve linear programming problem

Obtained unique optimal solution set

Maximizing the selection probabilities of optimal samples and at the same time minimizing the probabilities of unfavorable samples

Causey et al.(1985)

- Extension to controlled sampling problems more than three dimension
- Development of more effective algorithm for large controlled sampling problem