Optimizing Solution Sets in Two-way Controlled Selection Problems

Sun-Woong Kim
Steven G. Heeringa
Peter W. Solenberger

Survey Research Center Institute for Social Research University of Michigan

Overview

$\$$ Contributions to Controlled Selection

\# Two-way Controlled Selection Problem

* Optimal Samples
\# Optimal Controlled Selection
* New Public Use SAS-based Software
\# Examples
4 Further Studies

4 Contributions to Controlled Sampling

Goodman and Kish(1950)

Introduction of controlled sampling techniques for deep stratification and other highly constrained sample selection problems

- Jessen(1970)

Method 1, Method 2, Method 3 in two-way and three-way stratification

Hess, Riedel and Fitzpatrick(1975)

Controlled selection for the Michigan sample of general hospitals and patients

Causey, Cox and Ernst(1985)

Algorithm using transportation theory for two-way stratification

Rao and Nigam(1990, 1992)

Linear programming approach under certain probability sampling schemes

Sitter and Skinner(1994)

Linear programming approach using marginal constraints in two-way or three-way stratification

Huang and Lin(1998)

Algorithm using network approach in two-way Stratification

* Two-way Controlled Selection Problem

Two-way stratification desirable in the sample
design
(Hypothetical Example) Bryant et al. (1960)

Expected Sample $\operatorname{Sizes}(n=10)$				
Regions	Type of Community			
	Urban	Rural	Metropolitan	Total
1	1.0	0.5	0.5	2.0
2	0.2	0.3	0.5	1.0
3	0.2	0.6	1.2	2.0
4	0.6	1.8	0.6	3.0
5	1.0	0.8	0.2	2.0
Total	3.0	4.0	3.0	10.0

Notation

$$
\begin{aligned}
& \text { Row Stratification Factor }: R \text { categories } \\
& \text { Column Stratification Factor : } C \text { categories } \\
& R \times C \text { Tabular Array : A } \\
& \text { Expected Sample Sizes : } \boldsymbol{a}_{i j}, \quad i=1, \cdots, R, \quad j=1, \cdots, C \\
& \text { Possible Samples : } \boldsymbol{B}_{k}, k=1, \cdots, L \\
& \text { Internal Entry of } \boldsymbol{B}_{k}: \boldsymbol{b}_{i j k}=\left[a_{i j}\right] \text { or }\left[a_{i j}\right]+1, \\
& \text { where }\left[\boldsymbol{a}_{i j}\right] \text { is the integer part of } \boldsymbol{a}_{i j}
\end{aligned}
$$

Optimal Samples

Constraints for selection probabilities of samples

$$
\begin{aligned}
& E\left(b_{i j k} \mid i, j\right)=\sum_{i, j \in B_{k} B_{k} \in B} b_{i j k} p\left(\boldsymbol{B}_{k}\right)=a_{i j}, \\
& \sum_{B_{k} \in B} p\left(\boldsymbol{B}_{k}\right)=1,
\end{aligned}
$$

where B : a set of possible samples, $p\left(\boldsymbol{B}_{k}\right)$: selection probability of \boldsymbol{B}_{k}.

There may be a number of sets of probability distributions satisfying these constraints.

Consider some measures of closeness between A and B_{k}.

Metrics (or Distance Functions) :

$$
d_{1}\left(A: B_{k}\right)=\left[\sum_{i=1}^{R} \sum_{j=1}^{c}\left(a_{i j}-b_{i j k}\right)^{2}\right]^{\frac{1}{2}}, k=\mathbf{1}, \cdots, L
$$

: the overall distance between A and \boldsymbol{B}_{k} for $R C$ cells using the Euclidean metric

$$
d_{2}\left(A: B_{k}\right)=\left[\sum_{i=1}^{R} \sum_{j=1}^{c}\left(a_{i j}-b_{i j k}\right)^{2 m}\right]^{\frac{1}{2 m}} \quad, k=\mathbf{1}, \cdots, L
$$

$$
\begin{array}{r}
d_{3}\left(A: B_{k}\right)=\left[\sum_{i=1}^{R} \sum_{j=1}^{c}\left|a_{i j}-b_{i j k}\right|^{p}\right]^{\frac{1}{p}}, k=\mathbf{1}, \cdots, L \\
, \mathbf{1} \leq p<\infty
\end{array}
$$

$$
\begin{aligned}
d_{4}\left(A: B_{k}\right)= & \lim _{p \rightarrow \infty} d_{3}\left(A: B_{k}\right) \\
& =\max \left\{\left|a_{i j}-b_{i j k}\right|: \mathbf{1} \leq i \leq R, \mathbf{1} \leq j \leq C\right\} \\
& , k=\mathbf{1}, \cdots, L
\end{aligned}
$$

: the simplest distance between A and \boldsymbol{B}_{k} that is measured by only one cell among $R C$ cells

Definition

Optimal Samples :

A few samples having the minimum distance values from $d_{4}\left(\right.$ or $\left.d_{1}\right)$

Unfavorable Samples :

A few samples having the maximum distance values from $d_{1}\left(\right.$ or $\left.d_{4}\right)$

* Algorithm for Optimal Controlled Selection

PHASE 1. Find a set of possible samples satisfying the following internal and marginal constraints of the tabular array A :

$$
\begin{aligned}
& \left|b_{i j k}-a_{i j}\right|<1, \\
& \left|b_{\cdot j k}-a_{\cdot j}\right|<1, \\
& \left|b_{i k}-a_{i}\right|<1 .
\end{aligned}
$$

PHASE 2. Solve the following linear programming problem:

Determine $p\left(\boldsymbol{B}_{k}\right)$ that minimize

$$
\phi_{1}=\sum_{B_{k} \in B} d_{1}\left(A: B_{k}\right) p\left(B_{k}\right)
$$

or

$$
\phi_{2}=\sum_{B_{k} \in B} d_{4}\left(A: B_{k}\right) p\left(B_{k}\right)
$$

subject to

$$
\begin{aligned}
& \sum_{i j \in \boldsymbol{B}_{k}} p\left(\boldsymbol{B}_{k}\right)=a_{i j}^{*}, \\
& p\left(\boldsymbol{B}_{k}\right) \geq \mathbf{0}, \\
& \sum_{B_{k} \in B} p\left(\boldsymbol{B}_{k}\right)=\mathbf{1},
\end{aligned}
$$

where $a_{i j}^{*}$ is the non-integer part of $a_{i j}$.

PHASE 3. Choose randomly one sample which is a final sampling plan by using the method of cumulative sums or Lahiri(1951)'s method.

\# Implementation of the Algorithm

I. New public use SAS-based software

- Adapting two-phase revised simplex method to solve linear programming problem
- Obtained unique optimal solution set
- Maximizing the selection probabilities of optimal samples and at the same time minimizing the probabilities of unfavorable samples

\# Example

— Causey et al.(1985)

\# Further Studies

E Extension to controlled sampling problems more than three dimension

- Development of more effective algorithm for large controlled sampling problem

