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Abstract

In this paper, I try to address how students would react to the si-
multaneous presence of different grading schemes. I take two types of
grading schemes, absolute grading, which rewards based on a threshold
effort value, and relative grading, which rewards based on the relation-
ship a student’s effort has with respect to the competing student. To
achieve this, I incorporate the Colonel Blotto game for measuring the
best payoffs students can earn from relative grading classes. Specif-
ically, I treat it as a sub-game within a game that students can use
to derive their expected payoffs from to judge how they should split
effort between the two types of classes should they be taking them
simultaneously. Through this, I address the basic dynamics of student
effort allocation across different courses with different grading schemes.
In addition, I consider a situation where the students have different
thresholds of reward for the absolute grading class. I find that there
exists an equilibrium where the student who has the higher threshold
for the absolute grading class is better off should the threshold be high
enough and the payoffs of the classes fall under a specific relation.

Introduction

The question of what the optimal allocation of effort should be against an
opponent on multiple fields of competition has probably been extensively
explored by policy makers since the first competition between two human
civilizations; most likely in the form of “Should we invest labor in our troops,
harvest, or cultural activities?”.

On the other hand, the first mathematical formalization of the question,
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presently known as the Colonel Blotto game, had not been achieved until
the mid 20th century in Gross and Wagner (1950). The paper discusses the
optimal troop distribution strategy for two army commanders or players (one
of which is Colonel Blotto) who are looking to win over as many battlefields
as possible in a zero sum game by deploying more troops than the enemy
commander to each battlefield. In particular, the paper considers a two
battlefields case with symmetric and asymmetric troops reserves and three
or more battlefields case with symmetric troop reserves.

Due to the nature of exponentially increasing number of strategies with
respect to the number of battlefields that become available, solving for
more general n battlefield games, accommodating for asymmetry of reserve
troops, appeared after decades in Roberson (2006), which utilizes n-copula
distributions.

Nonetheless, the depth of insight one can bring even with results regarding
two battlefields with mathematical reasoning is impressive. In this paper, I
aim to apply the results of analyzing a two person competition across two
battlefields from Gross and Wagner (1950) to a hypothetical situation of
competition between two students across several courses that vary in grading
scheme between absolute grading and relative grading.

I would primarily like to see how two competitors competing over multiple
battlefields would react to a mix of grading schemes. Specifically, I will
gradually develop a game from a simple form of single type classes where
there are only absolute grading classes or only relative grading classes to
a mix of classes in which some are absolute grading classes and some are
relative grading classes. I assume that players first optimize by simulta-
neously distributing efforts, which corresponds to troops in the original
Blotto game, across absolute grading classes and relative grading classes and
then optimize by playing a Blotto game in the relative grading classes given
that there are at least two relative classes. Seeing the possible payoffs from
this scenario, players find the Nash equilibrium of effort distribution across
classes.

I find this inquiry relevant to discussions around policies that involve con-
templation of replacing an incumbent reward scheme to better distinguish
agents on their performance; one of which is the current ongoing discussion
in education to completely abolish absolute grading in favor of relative grad-
ing, formally known as rank order grading, to combat grade inflation such
as Cherry and Ellis (2005).
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In fact, if a college department tries to test out relative grading classes to
potentially replace absolute grading classes by replacing the grading scheme
only for some classes, I believe competition between students may play out
as the games I discuss in the paper. Such situations do not seem unlikely
given the expensive, complex nature of conducting random trials relevant to
the policy in labs.

In particular, if one were to document performance of students across two
different classes, they may account for hidden performance bias towards
some classes if the game between students dictates that they would be better
off if they devoted efforts only towards some classes by considering analysis
of the games of this paper.

I also mention additional past literature discussing grading or ranking
schemes in regards to instructor bias in a principal agent relation contract.
One relatively recent paper Frankel (2014) considers what grading scheme
a principal, which corresponds to a university administration that hires
instructors to teach and grade for its courses, can mandate to ensure pro-
duction of the least amount of grading bias, under the assumption that the
instructor (agent) for a course has a certain utility function for assigning
grades. Alternative forms of the problem of effort allocation across multiple
fields in competition against an opponent in the form of bids, where the
winner takes all, have been discussed in papers such as Moldovanu and Sela
(2006).

1 The Model

1.1 Default Assumptions

I go over common assumptions that apply across all models in the subsequent
sections. These will be mentioned again as deemed necessary in subsequent
sections.

Assume there are two players, student Blotto and the Enemy student who are
taking at least two classes that have grading schemes that is either absolute
or relative. Each class (or battlefield) is referred as class n will give a payoff
‘an’ given the effort criterion for the class is satisfied. If player Blotto fulfills
the criterion of rewards for class 1 for instance, he will receive a payoff of
‘a1’
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The absolute grading class has a threshold amount T (> 0) of effort for which
a student is able to receive a payoff only if they invest an effort equal or
above the effort threshold regardless of the enemy player’s effort. Otherwise,
their payoff is the negative of the reward.

Payoff for Blotto =
{
an if x ≥ T

−an if x < T
. (1)

On the other hand, the relative grading class has a zero sum game payoff
where the payoff for Blotto is determined by the amount of effort x and y,
given by each student respectively in class n, as such:

Payoff for Blotto =


an if x > y

0 if x = y

−an if x < y

. (2)

The reward scheme works the same way for the enemy student as well.
Payoff for each class may differ to reflect the importance of each classes to
the player. For example, the difference in importance could be the difference
of an elective and a mandatory class. This is reflected as a2 > a1 where the
elective class is class 2 and the mandatory class is class 1.

Assume both students have a fixed amount of effort that they can distribute
between classes. They are referred to as B(> 0) and E(> 0) for each respective
player. I refer to effort given by each player for one of the classes as x and y
respectively. For example, when there are two classes, I refer to x and y as
the amount of effort given to class 1 and subsequently B− x and E − y as the
effort given to class 2.

Payoff for increasing effort is assumed to be constant returns and linear. That
is, there is no diminishing mechanism to deduct an effort x to count as a
lower effort if it is bigger than a certain amount. There are no differences in
efficiency; an effort by Blotto has the same impact as the Enemy. Players also
commit all effort they have into the classes. They do not keep some effort
unused for leisure.

I will first start with single type classes that are entirely absolute or rela-
tive grading classes. Players can observe the other player’s effort reserves
and simultaneously choose a strategy. Once I reach the mixed classes case
however, I assume that the players first decide how much effort they will
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allocate towards relative classes based on the payoff they can receive by
playing a Blotto Game with the enemy player in the relative classes; this will
be mentioned in detail in section 1.5. In fact, I can treat it as if the player is
deciding to allocate effort between two classes where class 1 is the collection
of absolute grading classes and class 2 is the collection of relative grading
classes.

1.2 Single Type Classes: Absolute Grading

Consider a case when n = 2. Regardless of what the other player does, what
the other player’s available effort level E is, or what the threshold t is for
each class, Blotto can freely choose to allocate efforts between the two classes
such that his payoff is maximized. If he cannot reach thresholds for both
classes, he will at least give the threshold amount effort for the class with
the higher payoff and be indifferent about giving more effort to the higher
payoff class. This problem can be easily generalized for n absolute classes as
such:

Tn(x) =
{

1 if x ≥ tn
0 if x < tn

, (3)

max
n∑
i=1

Ti(xi)ai , x1 + · · ·+ xn = B. (4)

Remark. In the generalized statement of the problem, Tn(x) is an indicator
function that is different from T . Think of tn as T for each absolute grading class.

1.3 Single Type Classes: Relative Grading

This situation is essentially a two player Blotto game. I cite some parts from
Gross and Wagner (1950) to explain the details of the two player Blotto game
for the reader and only consider a case when n = 2 for the rest of this paper.
I refer to effort given to class 1 as x and, subsequently, effort given to class 2
as B− x. I also assume the payoff a2 ≥ a1 and let c = a2/a1.

I first consider a case where the effort reserves of student Blotto and the
enemy student are the same and then consider a case in which they are
different.

5



Case B = E:
Theorem 1.1. When B = E, student Blotto’s optimal strategy is

F∗(x) = I0(x)

and his payoff will be

K∗(x,y) = a1 sgn(x − y) + a2 sgn((B− x)− (E − y))
= (a1 − a2)sgn(x − y),

Remark. Here, I0(x) is a CDF that holds value 1 for random variable x with
value 0 and above.

student Blotto’s optimal strategy is to commit all his resources to class 2,
hence B− x = B or x = 0. For any strategies where Blotto commits any degree
less to class 2, he is bound to be dominated by a strategy of the enemy that
commits more than Blotto to class 2, which is equivalent to B − x < E − y
and x > y leading to a payoff of a1 − a2 ≤ 0 while the enemy student receives
a2 − a1 > 0

The same holds for the enemy student,thus with both committing all effort
to class 1 and no effort to class 2, the payoffs for both are K*(x,y) = H*(x,y) =
0.

Case B > E: Let the difference between the effort reserves of B and E be
denoted d = B−E, and let m ∈Z and the remainder r be such that

B = md + r (0 ≤ r < d).

Let r < p < d and let s =
m−1∑
j=0

cj .

Theorem 1.2. (Gross and Wagner (1950))

In the B > E case the payoff for Blotto is

v = (a1/s)(c
m + 1) =


2a2
m if a2 = a1
am2 +am1
am2 −a

m
1

(a2 − a1) if a2 > a1
, (5)

while the payoff for the Enemy is −v.
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The optimal strategy for student Blotto is

F∗(x) =
1
s

m∑
k=1

cm−kIp+(k−1)d(x)

and the optimal strategy for the enemy student is

G∗(y) =
1
s

m−1∑
j=0

cjIjq(y), (q =
E

m− 1
).

Remark. Ip+(k−1)d(x) and Ijq(y) represent CDFs that have value 1 for random
variables with value of effort allocation p+ (k −1)d and jq and above respectively
and 0 for anything below.

A more comprehensive proof is available in Gross and Wagner (1950). I go
through three main cases, that vary on how much is B exactly bigger than
E, to consider to help the reader better understand how these the optimal
strategies and payoffs work.

Subcase B > 2E:
Corollary 1.2.1. When B > 2E, Blotto’s optimal strategy is F ∗ (x) = Ip(x) with
a payoff of a1 + a2. The enemy is indifferent between all strategies and gains a
payoff of −a1 − a2

Intuitively, this means that student Blotto has effort reserves more than
enough to comfortably cover both class 1 and 2. He is indifferent between
strategies as long as he gives effort strictly larger than E to each class. Mean-
while the enemy is indifferent between all strategies since he cannot make a
difference whatever he does.

This is demonstrated as such.

B > 2E
d = B−E > E

Since 0 ≤ r < d, it must be that m = 1. Otherwise, it would lead to a contrac-
tion that 2(B−E) ≤ B which gives us B ≤ 2E. Note that

B = d · 1 + r = (B−E) · 1 + r (⇔) r = E

Thus, v = a1 + a2, reflecting Blotto winning in both classes and F∗(x) = Ip(x).
See that F∗(x) is 0 if x < r = E to reflect Blotto never allocating less effort to
each class than the enemy student’s total available effort.
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Subcase B ≤ 2E:
Remark. As B ≤ 2E is a general collection of cases, I go through it breaking it
down into cases with distinct optimal strategies and payoffs. Note that they sill
follow the structure of theorem 1.2.

Intuitively, this would mean that student Blotto is no longer able to comfort-
ably dominate the enemy student in both fields. It is not apparent whether
simply concentrating all his troops in classroom 2 is a better option than
following a mixed strategy where with some probability he commits more to
classroom 1 or classroom 2.

I first explore student Blotto’s strategy using a payoff matrix. I start with the
case B = 2E and let B = 6 and E = 3 as an example. For the enemy’s strategy,
I omit any strategies that do not commit completely to either class 1 or class
2 like (1,2) because these are easily dominated by Blotto’s strategy like (3,3).
Thus, strategies worth exploring would be (3,0) or (0,3). Meanwhile, Blotto
has three strategies: commit more to either class (C1 or C2) or split it even
(3,3). Note that C1 would be a range of allocations for which there is strictly
more effort given to class 1 that student Blotto is indifferent between. For
the split even option, which against enemy student’s strategies (3,0) and
(0,3) results in payoffs a2 and a1 respectively, see that they are dominated by
Blotto’s alternative strategies of committing more to either class 1 or class 2.

Player E
(3,0) (0,3)

Player B
C1 (a1 + a2,−a1 − a2) (a1 − a2,−a1 + a2)
C2 (−a1 + a2, a1 − a2) (a1 + a2,−a1 − a2)

Now I have simplified it down to a form of a penny matching game where
both players are now indifferent between their two strategies. In fact, after
calculating the optimal mixed strategy using the matrix, find that it is as
such

F∗(x) =
a2

a1 + a2
Ip(x) +

a1

a1 + a2
Ip+d(x)

where Ip(x) and Ip+d(x) correspond to strategy C2 and C1 respectively and
the optimal strategy dictates that the probability either are played should be
weighed by the payoffs of winning each class. For our B = 6 and E = 3 case it
would correspond to

F∗(x) =
a2

a1 + a2
Ip(x) +

a1

a1 + a2
Ip+3(x), (0 < p < 3)
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Meanwhile, for the enemy student the optimal strategy is

G∗(y) =
a1

a1 + a2
I0(y) +

a2

a1 + a2
Iq(y)

which for our B = 6 and E = 3 case would correspond to

G∗(y) =
a1

a1 + a2
I0(y) +

a2

a1 + a2
I3(y).

Once the expected payoffs are calculated, it is equal to (4) which gives us

a2
2 + a2

1

a2 − a1
.

for Blotto and the negative of Blotto’s payoff for the enemy student.
Remark. Also see that

a2
2 + a2

1

a2 − a1
>
a2

2 − a1a2

a2 − a1
= a2,

which denies our initial intuition that Blotto committing to class 2 is enough
based on the given situation that a2 ≥ a1 and Blotto has more effort reserves.

Our next step is the range 3E
2 < B < 2E.

This step results in the same payoff matrix for as B = 2E case except for the
fact that the optimal mixed strategy for Blotto has a different range of p since
r < p < d and the remainder would be positive now. Other range of strategies
that allocate effort outside the range of p (r < p < d) and the range of p + d
(r + d < p + d < 2d) will be dominated and removed from the set of strategies
considered for the mix.

Our next step is B = 3E
2 .

With the same procedure I went through in the two strategies case in the
B = 2E case, ruling out for dominated strategies I can find now find a rock
scissors paper game where players are indifferent between 3 respective set
of strategies. As an example, I choose case B = 6,E = 4 for our payoff matrix,
which gives me 0 < p < 2.

Player E
(0,4) (2,2) (4,0)

p (a1 + a2,−a1 − a2) (−a1 + a2, a1 − a2) (−a1 + a2, a1 − a2)
Player B p+ 2 (a1 − a2,−a1 + a2) (a1 + a2,−a1 − a2) (−a1 + a2, a1 − a2)

p+ 4 (a1 − a2,−a1 + a2) (a1 − a2,−a1 + a2) (a1 + a2,−a1 − a2)
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In more general terms the payoff matrix would look like the following,

Player E
0 q 2q

p (a1 + a2,−a1 − a2) (−a1 + a2, a1 − a2) (−a1 + a2, a1 − a2)
Player B p+E/2 (a1 − a2,−a1 + a2) (a1 + a2,−a1 − a2) (−a1 + a2, a1 − a2)

p+E (a1 − a2,−a1 + a2) (a1 − a2,−a1 + a2) (a1 + a2,−a1 − a2)

from which we can calculate an optimal mixed strategy

F∗(x) =
a2

2

a2
1 + a1a2 + a2

2

Ip(x) +
a1a2

a2
1 + a1a2 + a2

2

Ip+d(x) +
a2

1

a2
1 + a1a2 + a2

2

Ip+2d(x)

for Blotto and optimal mixed strategy

G∗(y) =
a2

1

a2
1 + a1a2 + a2

2

I0(x)+
a1a2

a2
1 + a1a2 + a2

2

Iq(y)+
a2

2

a2
1 + a1a2 + a2

2

I2q(y) (q =
E

3− 1
)

for the enemy student.

The next case would be 4E
3 < B < 3E

2 which has the same optimal mixed
strategy with a different p in a slightly different range with the remainder
being positive again. Then, consider case B = 4

3 in which Blotto will have
4 strategies for which he is indifferent between, will mix weighting them
by a probability according to the payoff of each class in a similar fashion.
Then, continue on to 5

4 , 6
5 ,

7
6 and so on while never reaching B = E since we

have assumed B > E. With the same procedure, see that there are increasing
number of strategies for Blotto and the enemy for which they are indifferent.

1.4 Mixed Classes: n = 2, Equal Thresholds

Now I have student Blotto and the enemy student taking a mix of classes.
The first case I consider is a mix of two classes where one is an absolute
grading class while the other is a relative grading class.
Remark. This case does not involve a Blotto game and the same holds for section
2.3, which will have different threshold T s. This is due to the fact that there is
only 1 relative class, which does not call for another distribution strategy on top
of the distribution between the absolute grading classes and the relative grading
classes.
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For the rest of the mixed classes case, I maintain the assumption that B = E.
As mentioned before, I refer to x and y as the amount of effort given to
class 1 by Blotto and the enemy student respectively and subsequently B− x
and E − y as the effort given to class 2 by Blotto and the enemy student
respectively. Let class 1 be a relative grading class and let class 2 be an
absolute grading class.

Let the absolute threshold T for the absolute class be equal for both players.
There are three strategies for student Blotto to consider: B− x > T , B− x = T ,
B − x < T . Since investing more effort beyond the threshold value for the
absolute class yields no more payoff than simply investing effort at the
threshold level T and takes away effort from the relative class, Blotto will
not choose B− x > T . The same holds for the enemy student. Then I am left
with a payoff matrix as such.

Player E
E − y = T E − y < T

Player B
B− x = T (a2, a2) (−a1 + a2, a1 − a2)
B− x < T (a1 − a2,−a1 + a2) (−a2,−a2)

Remark. I clarify some details that are missing from the payoff matrix. It should
be noted that the B−x < T and E−y < T actually encompass a range of strategies
for which players invest effort below T to the absolute grading class 2. If both
players choose to put effort below T in the absolute grading class, however, neither
player has the incentive to simply put only some effort into the relative classes
as it is easily dominated by the other player putting more effort into the relative
grading class, which results in a negative payoff for the player with the lower
effort.

Thus, once either player chooses the strategy to invest less than T effort into the
absolute grading class, they have incentive to invest all effort into the relative
grading class. If players both decide not to meet the threshold, they will both
invest all effort into the relative class, resulting in equal efforts in the relative
class. This ultimately results in both receiving a payoff of −a2.

Proposition. There are 2 different pure strategy equilibria B−x = T vs E−y = T
and B− x < T vs. E − y < T dependent on the payoffs of class 1 and 2.

Case a2 > a1: both players have incentive to play the threshold and each
receive payoff a2 as the effort they put in the relative grading classes are the
same which results in the case B = E mentioned in section 1.3.
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Case a1 > a2: For the first case a1 − a2 > a2, which implies a1 > 2a2, both
players put all effort into the relative grading class if payoff a1 is sufficiently
big enough. Otherwise, if a1 − a2 < a2 they both still play the threshold.

Case a1 = a2: Trivially, both players play the threshold.

The results in section 1.4 seem to align well with intuition. If the absolute
grading class has higher payoffs, there is no reason to deviate from playing
the threshold just to risk penalty far greater than the maximum reward from
the relative class. If the relative grading class has higher payoffs and has
payoff sufficiently high enough to negate the impediments of payoffs being
dependent on the opponent’s chosen strategy, players put all effort in the
relative grading class. Unfortunately, both players are worse off relative to
the best possible equilibrium without benefiting from putting all their effort
into the relative class.

1.5 Mixed Classes: n=3, Two Relative Classes, Equal Thresh-
olds

For this case, there 3 classes two of which are relative grading classes. Class
1 and 2 are relative grading classes and class 3 is an absolute grading class. I
assume B = E and the threshold T s for both students are equal.

As mentioned in section 1.1, I assume that students first decide to allocate
how much effort they will invest to the relative classes in total based on
optimizing with respect to the payoffs they expect to receive from the relative
classes by playing a Blotto game with the enemy student. I now call this
total effort given to relative class 1 and 2 as x and subsequently the rest of
effort given to the absolute class 3 is B− x.

Players can observe the enemy player’s effort reserves and both players si-
multaneously pick the strategy of whether to play the threshold or put all
effort into the relative classes (which I will explain why in the following re-
mark). Next, they observe how much effort the enemy has allocated towards
the relative classes. Both players simultaneously pick a strategy of effort
allocation across the two relative classes, choosing an optimizing strategy
and receiving a payoff according to theorem 1.2 in section 1.3 dependent
on whether x > 2y, x = 2y, y < x < 2y or vice versa respectively. These
correspond to case B > 2E, B = 2E, and E < B < 2E in section 1.3.

The payoff matrix is as such.
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Player E
E − y = T E − y < T

Player B
B− x = T (a3, a3) (−a+ a3, a− a3)
B− x < T (a− a3,−a+ a3) (−a3,−a3)

Remark. Again, I describe missing details in the matrix. It is different from
section 1.4. It should be noted that the B−x < T and E−y < T actually encompass
a range of strategies for which players invest effort below T for the absolute
grading class 3. But neither player has the incentive to simply put some effort
into the relative classes as we have seen in the classical Blotto game’s n = 2, B > E
case, having less available effort for the relative grading classes compared to the
competing player results in strictly less payoffs compared to when they have the
same amount of effort available for the relative grading class and even less when
the difference in effort is bigger.

Thus once a player makes the decision to invest less than T effort into the absolute
grading class, they have incentive to invest all effort into the relative grading
class. In particular, both players earn a payoff of −a3 for failing to meet threshold
T and a payoff 0 from engaging in the Blotto game in the relative classes 1 and 2
in a case B = E as mentioned in section 1.3, thus −a3 total payoff as seen in the
payoff matrix.

There are different pure strategy equilibria depending on the payoffs. It may
in fact look similar in form to the n = 2 case in section 1.4. Recall, however,
that I have assumed that players first decide to distribute efforts between
the absolute grading class and the relative grading class after considering
the payoffs they will earn from playing the Blotto game in the two relative
grading classes for some effort from the reserves put up against expected
effort investments from the enemy player. In other words, the payoffs are
now not a simple matter of a1 or −a1 as in section 1.4 based on who has more
effort in classroom 1.

I will, thus, also have to consider threshold T to be a deciding factor of what
a is for the asymmetric strategy cases in the payoff matrix. This is because
based on the magnitude of T , the decisions B− x < T against E − y = T and
E − y < T against B− x = T yields different x vs. y situations that may range
from B > 2E to E < B ≤ 2E cases mentioned in section 1.3.

Specifically, there are two cases:

Case T > 1
2B = 1

2E: The interaction of strategy B − x < T against E − y = T
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yields a = a1 + a2 as E − y = T now implies y = E − T < 1
2E = 1

2B which is
equivalent to 2y < B. This is the case B > 2E section 1.3 where I mentioned
Blotto comfortably dominating both classes and getting a payoff a1+a2 across
both classes. The same applies for interaction of strategy B− x = T against
E − y < T case as T is equal for both players.

In fact, see that specific for this case only, the equilibria is similar to section
1.4.
Proposition. There are two different pure strategy equilibrium dependent on the
relationship between payoffs of class 3 and total payoff a1 + a2 from the relative
classes in the case T > 1

2B = 1
2E.

Subcase a3 > a = a1 + a2: both players have incentive to play the threshold
and each receive payoff a2 as the effort they put in the relative grading classes
are the same which results in the B = E situation mentioned in section 1.3.

Subcase a = a1 +a2 > a3: Since a1 +a2−a3 > a3 implies a1 +a2 > 2a3, both play-
ers put all effort into the relative grading class if payoff a1 + a2 is sufficiently
big enough. Otherwise, they both still play the threshold.

Subcase a = a1 + a2 > a3: Trivially, both players play the threshold.

Case T ≤ 1
2B = 1

2E: Now, by the same logic in the T > 1
2B = 1

2E case, see that
in the asymmetric strategies cases, B ≤ 2E cases mentioned in section 1.3
arise and thus the payoffs a for the player with more effort in the relative
classes −a for the other player, following equation (5) in theorem 1.2, are
something smaller than a1 + a2.

Players find equilibria in a similar fashion but now the relation between a
and a3 must be reconsidered for each case depending on specifically how
big threshold T is as a varies with threshold T in interaction of strategies
B − x < T against E − y = T and interaction of strategies B − x = T against
E − y < T . I at least know that 0 < a < a1 + a2

Subcase a3 < a−a3: This also implies −a3 > −a+a3 Both players put all effort
into the relative classes.

Subcase a3 > a − a3: This also implies −a3 < a − a3. Both players play the
threshold.

Subcase a3 = a − a3: This also implies −a3 = a − a3. Players are indifferent
between their available strategies.
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2 Model Modification: Different Thresholds

So far, I have considered cases where threshold T was equal for both players.
I now consider cases where the threshold for the absolute class is different
for each student. In terms of the real world, it may be seen as partially
incorporating efficiency of effort. I set it up such that Blotto must put in
more effort to achieve good grades compared to the enemy student in the
absolute grading class.

I denote these thresholds T B and T E for Blotto and the enemy student
respectively. I assume B = E and inherit the respective x and B− x notation
for cases n = 2 and n = 3 from sections 1.4 and 1.5 respectively.

2.1 Mixed Classes: n = 2, T B > T E

Assuming Blotto’s threshold is higher than the enemy’s threshold for class
2 with other assumptions remaining the same, I get the following payoff
matrix.

Player E
E − y = T E E − y < T E

Player B
B− x = T B (−a1 + a2, a1 + a2) (−a1 + a2, a1 − a2)
B− x < T B (a1 − a2,−a1 + a2) (−a2,−a2)

Due to the introduction of the difference in threshold, there are more ambi-
guities in determining which payoff is bigger on top of different total payoffs
depending on the payoff each class that must be addressed. I start with the
more simple case.

Proposition. In the mixed two classes case with student Blotto having a higher
threshold, there are three different pure strategy equilibria B−x = T Bvs.E−y = T E ,
B− x < T Bvs.E − y = T E , and B− x < T Bvs.E − y < T E depending on the payoffs
of class 1 and 2.

Case a2 > a1: It is clear that both players playing the threshold is the equilib-
rium.

Case a1 > a2: There are two cases. If −a1 + a2 > −a2, combined with a2 < a1,
it implies a2 < a1 < 2a2. The equilibrium is for Blotto to put all effort into the
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relative grading class (B− x < T B) and for the enemy to put effort into the
absolute grading class. (E − y = T E)

On the other hand, if −a2 > −a1 + a2, which implies 2a2 < a1, the equilibrium
is both players putting all effort into the relative grading class. (B− x < T B

vs. E − y < T E)

Case a1 = a2: Trivially, both players play the threshold.

With difference in absolute threshold, intuitively, it might seem that student
Blotto is at a disadvantage. Playing the threshold automatically forces him to
allocate less effort the relative classes and, on the other hand, if the relative
classes payoffs are high, both players will choose to invest all effort into the
relative classes and both be worse off. There seems to be no outcome where
Blotto is better off.

In fact, however, despite facing a disadvantage solely from competing in
the absolute threshold grading class by having a higher threshold, if the
rewards are set just right such that a2 < a1 < 2a2, there is an equilibrium
where student Blotto is better off than the enemy student with a payoff of
a1 − a2 > 0 while the enemy student earns a payoff of −a1 + a2 < 0.

2.2 Mixed Classes: n = 3, T B > T E

I now consider a modification of section 1.5. On top of the different thresh-
olds T B and T E , I must also consider how exactly big they are and how they
relate to each other.

There are three cases to consider E − T E > 2(B− T B), E − T E = 2(B− T B), and
E − T E < 2(B− T B). In the following figure, I present a visualization of one
specific case of E −T E > 2(B−T B) to help visualize how the thresholds affect
a specific equilibrium I next mention.

T B

T E
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For latter two cases, the number ambiguities increase as not only do I have to
consider the difference in threshold values and relationship between a1 + a2
and a3 I must also consider cases where the payoff is between 0 and a1 + a2
as I will demonstrate for the first case. This makes this problem hard and
lengthy to state a definitive equilibrium by approaching it by each case.
Instead, I first present a general optimal strategy and equilibrium that holds
across all cases. Next, I will go over a specific case E−T E > 2(B−T B) showing
a definitive case in which there exists an interesting equilibrium under the
right conditions.

Proposition. There exist three different pure strategy equilibriums when the
payoffs v − a3 and a3 − (a1 + a2) are strictly different (i.e. either < or >) in the
mixed three classes case with two relative grading classes and different thresholds.

The payoff matrix is as such.

Player E
E − y = T E E − y < T E

Player B
B− x = T B (−(a1 + a2) + a3, a1 + a2 + a3) (−(a1 + a2) + a3, a1 + a2 − a3)
B− x < T B (v − a3,−v + a3) (−a3,−a3)

Remark. Note that v follows the payoff equation (5) in theorem 1.2 depending
on the relationship between B and E − T E , the efforts put into the relative classes
by each respective player in the interaction of strategies B−x < T B vs. E−y = T E ,
which corresponds to the effort reserves B and E in section 1.3’s Blotto game.
Thus 0 < v ≤ a1 + a2

Case a1 + a2 < 2(a1 + a2) < a3 and a1 + a2 < a3 < 2(a1 + a2): Both players will
play the threshold as regardless of what v is, v − a3 is sure to be less than 0.
In this equilibrium the absolute class’s payoff forces Blotto to allocate less
effort towards the relative classes to such a degree a case B > 2E from section
1.3 occurs and the enemy player is better off.

Case a3 < a1 + a2 < 2(a1 + a2):

Subcase v − a3 < a3 − (a1 + a2): This implies −a3 < a3 − (a1 + a2). This also
implies −v+a3 > −a3 +(a1 +a2) which in turn implies a3−v > −a3. Thus, both
players play the threshold.

Subcase v−a3 > a3− (a1 +a2): If −a3 > a3− (a1 +a2), both players put all effort
into the relative classes. If −a3 < a3 − (a1 + a2), the equilibrium is B− x < T B

vs. E − y = T E . If −a3 = a3 − (a1 + a2), which would also imply −v + a3 ≥ −a3 =
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a3 − (a1 + a2). In subsubcase −v + a3 > −a3 = a3 − (a1 + a2), the equilibrium is
B−x < T B vs. E−y = T E . In subsubcase −v+a3 = −a3 = a3−(a1+a2), the enemy
player is only indifferent between his strategies if Blotto chooses strategy
B− x < T B while student Blotto is only indifferent between his strategies if
the enemy chooses strategy E − y < T E . While Blotto is indifferent between
his strategies, if he chooses to play the threshold when the enemy student
chooses not to play the threshold, the enemy player will be worse off. Thus
the enemy player chooses to play the threshold. Seeing this, in turn, Blotto
will be incentivized to choose B − x < T B. The equilibrium is thus again
B− x < T B vs. E − y = T E .

Subcase v − a3 = a3 − (a1 + a2): This implies −a3 < a3 − (a1 + a2). This also
implies a3 − v = −a3 + (a1 + a2) which in turn implies a3 − v > −a3. Student
Blotto is indifferent between his strategies only when the Enemy student
chooses to play the threshold E − y = T E . The enemy player on the other
hand, has his all effort into the relative classes dominated by choosing the
threshold and thus chooses to play E − y = T E .

Now I go over the specific case of E − T E > 2(B− T B).

Case E − T E > 2(B− T B): The payoff matrix is as such.

Player E
E − y = T E E − y < T E

Player B
B− x = T B (−(a1 + a2) + a3, a1 + a2 + a3) (−(a1 + a2) + a3, a1 + a2 − a3)
B− x < T B (a− a3,−a+ a3) (−a3,−a3)

Proposition. In case E−T E > 2(B−T B), there exists a equilibrium where student
Blotto is better off than the enemy student. Thus in general for the mixed three
classes with two relative classes and different absolute grading classes thresholds
in which student Blotto has a higher threshold T B, there exists a equilibrium
where student Blotto is better off than the enemy student.

Note that a in the payoff matrix now is 0 < a ≤ a1 + a2. This is due to fact
difference in threshold of the two players adds ambiguity in how effort B,
given student Blotto has incentive to put all effort into the relative class and
chooses strategy B − x < T B, is bigger compared to effort y that the enemy
student puts into classes 1 and 2. It could be that B > 2y or not. It is at least
certain that B > y, thus by the results we saw in section 1.3—specifically
the cases B ≤ 2E and B = 2E—we can make a relatively weak assertion that
0 < a ≤ a1 + a2.
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For subcases a1 +a2 < 2(a1 +a2) < a3 and a1 +a2 < a3 < 2(a1 +a2), both players
will play the threshold as regardless of what a is, a− a3 is sure to be less than
0. In this equilibrium the absolute class’s payoff forces Blotto to allocate less
effort towards the relative classes to such a degree a case B > 2E from section
1.3 occurs and the enemy player is better off.

For subcase a3 < a1 +a2 < 2(a1 +a2) however, we must consider a’s magnitude.
If B > 2y for the case B − x < T B against E − y = T E and on top of that, if
−a3 < a3 − (a1 + a2) which implies 2a3 > a1 + a2, see that B − x < T B against
E − y = T E is in fact the equilibrium.

Thus, I have shown that if the payoffs are set just right such that a3 < a1 +a2 <
2a3 < 2(a1 + a2) and the threshold relation is E −T E > 2(B−T B), where Blotto
has a very large threshold value, we see an equilibrium where student Blotto,
who seems to be at an disadvantage to the enemy student, is better off
compared to the enemy student with a payoff of a−a3 = a1 +a2−a3 > 0 while
the enemy student receives a payoff of a− a3 = a1 + a2 − a3 < 0

3 Conclusion

I have explored the optimal allocations of student effort across courses with
different grading schemes under the assumption of constant returns to effort
and players first deciding to split effort between the absolute grading class
and the relative grading class based on expected payoffs from playing the
Colonel Blotto game in the relative grading classes.

There are certainly limitations to this paper. Constant returns to effort fails
to reflect decreasing marginal returns with more effort. It also fails to reflect
the different efficiency with which students can transfer effort into payoffs.
Adding such a feature would potentially ruin the zero sum game framework
and complicate calculations. Adding more absolute classes and relative
classes is certainly another realm I could have explored.

I was able to address the basic dynamics of student effort allocation should
situations in which students take two classes with different grading schemes
arise. I have also demonstrated the possibility of an existence of interesting
equilibrium, where the seemingly disadvantaged student is better off, under
the condition that we incorporate the fact that students may have to put in
more effort to reach the same grade in the absolute grading class and we set
the payoffs of the classes just right.
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